## EPITOME

OF

## A COURSE OF LECTURES

ON

NATURAL AND EXPERIMENTAI.

## PHILOSOPHY, AND ASTRONOMY;

*AS DELIVERED BZ THE IATE

Mr. JOHN BANKS,<br>IN ALL PARTS OF THE KINGDOM:

And as they continue to be delivered annually in Liverpool BY HIS SON.


#### Abstract

PY THE WORD OF THE LORD WERE THE HEAVENS MADE; AND all the host of them by the breath of his MOUTH.

PSALM XXXII, 6.


> Liendal;
> printed by w. pennington. 1809.
> Price trwo Shillings.

Digitized by the Internet Archive in 2022 with funding from University of Toronto

## Preface to this Edition

$H_{\text {Aving met with the mof liberal fupport and }}$ encouragement in conducting thefe lectures for three fucceffive feafons in Liverpool, I cannot do lefs than comply with the numerous requefts which have been made for the republication of this Epitome, fince it has been out of print.

In doing this, I avail myfelf of the opportunity of making feveral additions to it, in conformity with the intention which my father intimated to me, that he would have made, had he lived to reprint it himfelf.

The progreffive increafe in the knowledge of different branches of philofophy had rendered this necef. fary; and though future difcoveries may either confirm or correct our views and prefent fyftems, yet it is interefting to obtain a competent acquaintance with the refults of the inveftigations of the eminent men in the prefent day, whofe labours have been devoted to thefe fubjects.

## PREFACE.

In contributing my exertions to this end, I acknow$1_{\text {edge }}$ with pleafure and gratitude the kind partiality of our numerous friends, who have countenanced the eftablifhment of an annual courfe of lectures in this place.

In prefenting this edition to the public, I regret that the increafe in the price of paper and printing, exclufive of the additional matter, impofes the neceffity of charging it higher than the former.

Fonathan Banks.
Liverpool, 1809.

## Preface to the former Edition.

This Epitome is chiefly defigned for the ufe of thofe who have attended my courfe of experiments; to fuch, I am perfuaded, it will be of fervice, by recalling ideas which had flipt the memory; and the want of plates, it is prefumed, will be abundantly compenfated by the appaatus; and to thofe who have not yet had the opportunity, it may, in fume meafure, convey the firt principles of the fciences, provided they will be content with naked affertions, without either mathematical demonftration, or experimental proof.

## EPITOME

OF A

## COURSE OF LECTURES.

## INTRODUCTION.

THIS courfe is intended to explain, in the moft eafy and familiar manner, the general properties and laws of matter; and to fet before the inquifitive mind, the caufes of the moft material phenomena which we obferve amongft natural bodies; at lea fo far as difcovered: for though we muft confefs that the works of iufinite wifdom can never be fully comprehended by the faculties of man, yet how far reafon, when affifted with inftruments, may attair, feems to us indeterminable; thus the philofophers of the prefent age, though ftill wholly ignorant of the true caufes of many of the moft common phenomena, have, neverthelefs, by diligent enquiries and experiments, gained the knowledge of many
A 3
equally
equally unknown to our forefathers, and by them, perhaps, deemed incomprehenfible. And there is no doubt, but, in future ages, fcience will continue its progreffion; for it feems providentially appointed, as fome way neceffary for the carrying on, or well being of fociety, that the feiences fhould be gradually improving. Yet fill it muft be acknowledged, that many things are known, which reafon could never have led us to the knowledge of; but whilit man has been diligently feeking after one thing, he has accidentally, or rather providentially, hit upon, or difcovered another, of greater importance, and of mure extenfive utility to mankind.

As to the ufe of philofophy, it muft be confeffed to be almoft unlimited, and may be recommended to people of all ranks. For many things appear to be, what in reality they are not. Thus, to the eye, unaffifted by philofophy, the Sun appears to be a flat fhining plate, the ftars to be fmall lucid points, like diamonds, and all at equal diftances from us; and feem to revolve round the earth in twenty-four hours ; while the earth feems to be fixed, and to be by much the largeft body in the univerfe. But a competent knowledge in philofophy will ftrip things of the difguife and falfe colours under which they appear ; or rather inftead, as is too commonly fuppofed, of contradicting the plain and pofitive proof of the fenfes, evince, to the moft unanfwerable demonftration, the impoffibility of their appearing otherwife;
otherwife; and from thofe very appearances deduce the moft convincing arguments to fupport its own affertions; thus will it furnifh the mind with more juft and fublime ideas, by removing the errors of prejudice, received by falfe education, cuftom, or the authority of men.

Philofophy alfo, as it is concerned in the invention and adjuftment of machines, is of univerfal utility to mankind; to it we owe the conftruction of fhips, fteam-engines, water-engines, pumps, mills, clocks, watches, dials, telefcopes, cranes, jacks, the organ, harpfichord, and every other kind of initrument, machine, or engine, however complicated, or for whatever purpofes they are appointed.

In teaching philofophy as a fcience, it is neceffary to legin with the moft fimple and known properties of bodies; and thence to proceed, by inferring one truth from another, till we arrive at the moft abftrufe parts; always ufing experiments where the nature of the thing will admit them, except that which is afferted be fufficiently plain without. And though the experiments afford the higheft degres of entertainment to the rational mind; yet fo much the more inftruction will they convey, as this regular procefs is more attended to, and better imprinted on, the memory.

## [8]

## LECTURE 1.

THE

## GENERAL PROPERTIES OF MATTER.

This Lecture is intended to explain the general properties of matter, the different kinds of attraction, and from thence to deduce the principles of feveral ufeful arts. We have four rules whereby we fhould be guided in our philofophical enquiries: the firft is,

That more caufes for natural effects are not to be admitted than are both true and fufficient to expiain the pbenomena.

This agrees with reafon, and revelation ; for it is certain that God has made nothing in vain; which would evidently be the cafe, if two caufes were admitted where one would ferve.

The fecond is, That for natural effects of the fame kind, the fame caufes are to be afirgned, as far as can be done.

That is, we are to affign the fame caufe for the falling of ftones in America, Africa, \&c. as in Europe; the fame caufe for refpiration in man and bealt; and that light in all kinds of bodies is produced by the very fame caufe.

The third rule is, That the qualities of natural bo-- dies, which cannot be increafed or diminifled, and agree to all bodies on which experiments can be made, are to be reckoned, as the qualities of all bodies wobat joever.

Thus, becaufe extenfion, folidity, divifibility, \&e. are found in all bodies that we know, we may juftly conclude that they belong to all bodies whatfoever.

The fourth rule is, That in experimental phi'ofophy, propofitions collecied from the phenomena, by induction, are to be deemed, notwith)fanding contrary bypothefes, either exactly or very nearly true, till other phenomena occur, by which they may be rendered either more accurate, or liable to exception.

All bodies whatever are found to have the following common properties, viz.

| Exfenfion, | Mobility, |
| :--- | :--- |
| Solidity, | Vis Inertia, |
| Divifibility, | Attraction and Repulfion. |

EXTENSION, is a property which belongs to all matter in general ; for it is certain no body can exift, but it muft take up fome part of fpace.

SOLIDIT , is that property which a body hath of excluding ali others from the place it poffeffes.

DIVISIBILITX,

DIVISIBILITY, is a property whereby bodies are capable of having their parts feparated ad infsnitum*. That this property exceeds the utmoft bounds of our imagination, is a mathematical truth, and may be demonftrated different ways.

MOBILITY, is that property which bodies have of being moveable.

The VIS INERTIE, or inactivity of matter, is that property whereby bodies refift the action of other bodies, tending to generate or deftroy motion in them.

ATTRACTION, is a property whereby bodies mutually tend towards each other: if the bodies be of unequal magnitude ; in the greater, it is called attraction, and in the leffer, gravitation.

REPULSION, feems to be a property belonging to the fmalleft particles of matter: thus we fee the particles
*If it is true, as generally maintained, that one particle is capable of being divided into an infinite number, which number cannot be increafed; may not another particle alfo be divided into an infinite number, which number cannot be increafed; and in like manner a third, \&c. and if thefe cannot be added, will it not follow that there may exift many infinite numbers?

But if the whole material creation, however extenfive, was divided into particles infinitely fmall, would the number be more than infinite.
particles of water, feparated by the action of fire, repel each other; and the particles of any kind of hard matter, being fet at liberty by fume chemical procefs, conftitute a perfectly elaftic air.

The attraction of gravitation takes place only in large bodies, fuch as the Sun, Earth, and planets, and is a property whereby all fmaller bodies within the fphere of their attraction, tend towards their centres. The attracting efflavium ur energy is found to decreafe as the fquares of the diftances increafe; that is, if a body at the diftance of 10,000 miles from the earth, tend towards it with a certain force; at the diftance of 20,000 miles, it would tend towards it with only one fourth part of that force; at the diftance of 30,000 . with only one niuth part thereof, \&c.

The planets are all retained in their orbits by the attraction r.f the Sun; and by their motions, the above law is fully confirmed; for as the fquare of the diftance of Venus from the Sun, is to the diftance that Mercury falls from a tangent tu his orbit in one hour; fo is the tquare of the diftance of Mercury from the Sun, to the ditance that Venus falls from a tangent to her orbit, in the fame time; and fo of the refl.

The power which unites the oriminal particles is called the attraction of cohefom, and is mutual between them, or they are attracted and attract each

## 12 THE PROPEKTIES OF MATTER.

other. This power feems to act only in contact, or at imperceptible diftances in all folid bodies. The exiftence of this power is proved by two leaden balls, having their furfaces pared very clean, and preffed together with a gentle twit, after which they will require 40,60 , or 100 pounds weight to pull them afunder, according as more or lefs of the furfaces are in contaft: for this power feems to act nearly in proportion to the quantities of contiguous furfaces. This is the natural cement by which the parts of folid bodies are bound together, and by which they are kept from crumbling to their original duft. Hard bodies, which cannot by preffure be brought into intimate contact like the leaden balls, require fome kind of matter to be put between them, in order to niake them cohere; fo if flint, glafs, \&ic. reduced t : impalpai:le powder, aid mised with fome vifcid fluic, be applied between two bodies, whofe furfaces are clean, when dry it will make them cohere veiy firmly. Hence we fee the reafon that in polifhed furfaces, a little damp is fufficient to make them cohere; if a little oil or tallow be ufed, the cohefion is much ftronger, as is Jiezon by experiment.

From this principle we have alfo the nature of foldering, gluing, folating glafs, filvering and gilding metals, \&c. as explained in the lecture.

The attraction of cohefion is different between the particles of different bodies; thus, water put
into clean glafs, china, \&c. is feen to rife all round by the fide of the veffel; but if quickfilver be ufed, it will ftand loweft at the fides; from whence it appears, that the power of attraction is greater between the glafs and water, than among the particles of water themfelves; and that it is greater among the particles of quickfilver, than between the glafs and quickfilver. In this fimple caufe, divine wifdom is abundantly manifeft; for by it we have numbers of the moft extraordinary effects produced.

It is owing to this, that water rifes above the common level in the capillary tube; alfo the action of the capillary fyphon, and filtre, depends on the fame principle; for the capillary fyphon, being a fmall bended tube of glafs, by attraction raifes water up one leg, carries it over the bended part, and down the other, where it falls, by its own weight, drop by drop. The filtre being made of yarn, felt, cloth, \&c. the filaments act like fo many fyphons, and carry a fluid off in the fame manner, but much fafter. From hence we have the reafon of fluids rifing in heaps of fand, afhes, fugar, \&c ; of tallow rifing in the wicks of candles; of water being drawn up the fpunge; of ink rifing in the pen, and alfo of its being drawn out again in writing. From hence we alfo account for the rifing of fap in trees and plants; for, upon proper examination, it is found that the bodies of trees are compofed of an infinite number of capillary tubes, of different magnitudes;

## 14 THE PROPERTIES OF MATTER.

the largef feem, by various experiments, to be appointed for the circulation of air ; and the fmaller for attracting the juices of the earth, and raifing them to the top and utmoft parts of the branches: for it may be obferved, that the fmaller the bore of the tube, the higher a fluid will rife, as is Joerwn in the experiment.

The tendency which different fubftances have to unite together in a chemical way, has generally been attributed to different degrees of attraction exifting amongft their conftituent parts; and as in many cafes the effects produced are proof of a very ftrong difpofition to union, or combination, this has fome. times been diftinguifhed by the term affinity, or elective attraction. This affinity is known, by repeated experiments, to be always the fame betwixt the fame fubftances: and from the various degrees of it fubfifting betwixt any one fubftance, and any number of others, tables of affinity have been compofed, by which may be feen its various gradations. Upon this principle of one fubftance having a fuperior attraction to fome one other, a weaker degree of attraction to a fecond, ftill lefs to a third, \&c. depends the analyfis of all compound bodies, as well as their original compofition. Hence we perceive the caufe of

## Solution.

As it is neceffary, in o:der to effect the union of
two fubftances, that one of them be in a liquid ftate, if a folid and a fluid be put together, provided the power of attraction between the particles of the fluid and the particles of the folid be fronger than between the particles of the folid themfelves, every particle of the fluid will then attract a pirticle of the folid. or fo many of them as it can futain, and then the whole menftruum being faturated therewith, the folution will ceafe.

This may be illuftrated by putting falt or fugar in water, which will diffolve a confiderable proportion of thefe fubftances, and hold them in folution, yet remain as tranfparent as before.

If the liquid be heated, and as much falt added as it can diffulve; upon couling again it will let go a part of the falt, by which it appears that heat affifts folution, or renders the menftruum capable of holding: more of a fubflance in folution, than it will do at a lower degree of temperature.

Solution is alfo exemplified in the conftant action of the air upon water, which is diffolved and diffufed through the whole atmofphere, and exitts in it, in a ftate of folution, when the air is moft tranfparent.

Solution, in a more compound way, may be illuf. trated by putting filver, copper, brafs, iron, \&c. in

## 16 THE PROPERTIES OF MATTER.

nitric acid (aqua fortis) but in this procefs, befides the folution of the metal, a partial decompofition of acid takes place ; the metal will however be diffolved and difperfed through the acid, by which it will be fultained, and that without deftroying its tranfparency.

Solution differs therefore from mixture; for any finely powdered fubflance may be, by agitation, difperfed through a liquid, and fufpended in it for a time; but if it be not capable of folution in the liquid, it renders it opake, and will fhortly fall down to the bottom, having undergone no change.

## Precipitation

Depends alfo upon the fame principles. If to any kind of folution fome fubftance be added, fo thall there be a ftronger attraction betweent the new added matter and the menflruum, than between the menftruum and the diffolved body, the new matter will then take place of the old, and let it fall to the bottom.

To a folution of Epfom falt, add a folution of alkali, and the bafis of the Epfom falt will be precipitated in white flakes, which is the magnefia alba.

Epfom falt is compofed of magnefia and the acid of vitriol, or fulphuric acid ; it is therefore denominated fulphate of magnefia.

A more

A more powerful attraction takes place between the acid and the alkali, than between the acid and magnefia; hence the magnefia is thrown down, and the union of the acid and the alkali conftitute a different kind of falt, the fulphate of pot-afh (vitrio lated tartar.)

The effects of this affinity in different fubftances is of the greateft ufe in difcovering the ingredients contained in any traufparent liquid; for frequently fubftances of a pernicious tendency are held in folution in water, \&c. and by the addition of a proper teit, may be difcovered either by precipitation, or change in the colour.

Thus lead is difcovered in water or white wine, by adding fulphuret of pot-afh (liver of fulphur) diffolved in lime water: the mixture appears red, and in time precipitates.

Copper in fulution may be difcovered by the ad. dition of volatile alkali.

Iron will alfo precipitate copper, if the folution be moderately ftrong ; the acd, preferring the iron, diffolves it, and the copper is precipitated on its furface.

Iron, held in folution, may be difcovered by a
decoction

## I 8 THE PROPERTIES OF MATTER.

decoction of galls, which turns the folytion black; or it may be precipitated by pruffiat of pot-afh (phlogifticated alkali) and if muriatic acid be added, a beautiful Berlin blue is formed.

Water containing felenites, allum, fal-ammoniac, or calcareous earth, will appear milky by adding a folution of pot-afh.

New fyrup of violets added to water which con_ tains an acid, will turn it red, but if it contains an alkali, green.

A further variation takes place in thus chemically combining different fubftances; for two fubftances, which feparately emit very ftrong effluvia, when united form a compound which is without fmell, and the contrary.

Muriatic acid and ammonia combined, conflitute muriate of ammonia, which has no fmell.

Quicklime and muriate of ammonia (fal-ammoniac) pounded very fine, aild atterwards mixed together, emit a very ftrong fmell.

Alkohol and nitric acid, when mixed, produce a compound, having a very agreeable odour.

By means of this chemical affinity, various fubftances
ftances are effentially changed as to their properties in the compound ; and though either of them taken feparately are free from any bad confequences, yet the fame quantity of the compound becomes the

- ftrongett of poifons.

Alfo fubftances, which feparately have a corrofive quality, whea combined entirely lofe it, and become quite harmlefs.

As fulphuric acid and quicklime, which will either of them burn or corrode, but when combined form platter of Paris, poffeffing no fuch property.

## Fermentation

Depends upon the fame principles; for if two fluids be put together, provided there be a different power of attraction between their particles, they will thereby be thrown into a ftrong agitation and commotion amongtt themfelves, and will be fo incorporated with each other, that they will feem to liave clanged their properties, and acquired new ones: in fact a decompofition of the liquids takes place, and their elementary parts form new affociations, pufieffing properties ftrikingly different to the original ingredients.

The putrefactive fermentation is carricd on by the fame means, but the combinations formed, differ; the

20 THE PROPERTIES OF MATTER。
conflituent parts of the fubitance efcaping in the form of gar, and leaving only an earthy refiduum.

The acetous fementation takes place under proper circmitances from the affaity betwixt wine and the oxygen of the atmofphere, and may be forwarded by communicating oxygen to the wine, \&c.

This affinity produces very ftriking effects in py rophorus, phofphorus, oxygenated muriate of pot aff, aid fulphuric acid, \&:c.

From this difference of the degrees of attraction between different bodies, we have perhaps the moft rational manner of accounting for heat, explofions, earthquakes, volcanos, \&c.

If aqua fortis be poured upon iron filings, a very confiderable degree of heat will be produced.

Alfo, if three parts of nitre, two of falt of tartar, and one of fulphur, be pounded and mixed together, (which mixture is called pulvis fuminans) and a fmall quantity of it heated upon an iron plate, as foon as it begins to melt, and the particles of the different bodies come in contact, the nitre is in an inftant converted into air.

## MAGNETISM.

THE attraction of magnetifm is peculiar to the loadftone
loaditone and iron, as there is no other body but iron that it can be communicated to.

Every loadtone has two poles; one called the north, and the other the fouth pole.

This virtue may be communicated to iron different ways, and thereby artificial magnets may be made to anfwer all the ends of a natural one.

If we take four or five fteel bars, fix inches long, half an inch broad, and about an eighth of an inch thick, well polifhed and hardened, if they be laid end to end, and the magnet drawn over them feveral times, they will become ftrongly impregnated with the virtue. Thefe properly fitted up in a cafe, will make a good artificial magnet : but perhaps it may be better, in fome cafes, to have the bars bent in a particular manner, as is foewn in the experimento

This virtue may alfó be communicated to a piece of polifhed fteel, by placing it in the magnetic meridian, and rubbing it always one way with a burnifher.

Iron bars, by flanding long in one pofition, ace quire the magnetic virtue.

If a magnet be made red hot, or become rulty, it lofes much of its virtue:

It is generally fuppofed that the efluvia, coming out at one pole, return in curves of valious directions, and enter in at the other; and indeed we have feveral experiments which countenance fuch an hypothefis.

If a piece of paper be wrapped over the end of a magnet, including the two poles, and the magnet be applied to a few fine iron filings, they will be taken up by it in the form of curves communiating from one pole to the other.

Alfo if three magnetic bars be laid parallel to each other, in fuch order that the north eid of the firt fhall correfpond with the fouth end of the fecond, and the third be laid with its end in the fame direction as the fecond, and afterwards a piece of clean paper covering the whole ; upon dufting fine particles of iron upon the paper they will affume curves, which indicate the direction of the magnetic cfforia.

If a magnetic needle be fufpended upon a point, in England, it will now make an angle with the meridian about 22 degrees; the north ei.d being towards the weft, and the fouth cod towards the eaft, which is called the variation of the needle.

In 1580, it had one point eaft variation; in 1657 , it had no variation.

When a needle is well made, and fufpended like a fcale beam, in moft places it dips below the plain of the horizon.

In ${ }^{1775}$, in a royage to Madras, the variation and dip were as below.

| Latitude. | I.ongitude. | Variation. | Dip. |
| :---: | :---: | :---: | :---: |
| N. $49^{\circ}{ }^{\circ}$ | W. $9^{\circ} 0^{\prime}$ | W. $180{ }^{\circ}{ }^{2}$ | N. $73^{\circ} 4$ |
| $33 \quad 30$ | $15 \quad 30$ | 19 16 | 65 1 |
| 915 | 16 - | $12 \quad 50$ | 386 |
| 110 | 1616 | 1247 | $24 \quad 2$ |
| S. 710 | $23 \quad 30$ | $6 \quad 30$ | 110 |
| 146 | 2528 | 420 | S. 22 |
| 22.8 | 310 | E. ${ }^{\text {a }} 4$ | 153 |
| 3425 | 1821 | W. 318 | 356 |
| 3449 | E. 3626 | 27.30 | 58 |
| $28 \quad 20$ | $78 \quad 10$ | 1249 | $57 \quad 7$ |
| 526 | $81 \quad 17$ | - 8 | 303 |
| N. 519 | $88 \quad 13$ | - 53 | 8 - |
| $9 \quad 28$ | 8510 | - 53 | N. ○ 5 |
| 1055 | $84 \quad 55$ | - 53 | S. 033 |
| 14.17 | 8r 23 | 22 | $8 \quad 5$ |

## [24]

## LECTURES II. \& III,

## PNEUMATICS.

Preumatics is that part of philofophy which treats of the nature and properties of the air.

The particles of air are extremely fmall, fo that they evade the fight, though affifted with the beft glaffes. It is moft likely that thefe particles are round, and that a repelling power takes place between them; for the air is found to be an elaftic fluid.

The whole body of air in which we breathe, and which furrounds the globe of the earth, is called the atmofphere.

The air, being elattic, is at every different altitude of a different denfity; that is, it is moft denfe upon the furface of the earth, and the higher we afcend, it becomes more rare or thin; except that which is near the earth be fometimes rarified by the heat reflected from its furface.

The altitude of the atmofphere is not exactly known ; it extends about 45 miles above the earth's §urface before it be too thin to refrait a ray of light;

If it was every where of the fame denfity with that: near the earth, its altitude would be about five mile and a quarter.

That the air is a body, is evident, by its excluding other bodies from the place it poffefles; for if a glafo be inverted and funk in water, the water will not rife in it, as is evident by a lighted candle contio nuing to burn in it, though under water. The diving bell depends on this property of the air; for if a large, veffel be made heavy enough to fink with the open end downward, a perfon may defcend in it to a confiderable depth, and the water will be kept from rifing, by the fpring of the air: yet the air being elaftic, and therefore capable of being compreffed, as the bell defcends the water will gradually rife; and when it comes to the depth of 33 feet, half its capacity will be filled with water; but it may be kept from rifing, or driven out after it is rifen, by fending duwn cafks filled with frefh air, which may be taken in at the bottom of the beli, while that corrupted by breathing may be difcharged. at the top, by a cock for that purpofe.

As the air is a body, it has alfo weight, and gravitates towards the earth, like other bodies, in proportion to its quantity of matter.

[^0]1. If the hand be laid upon a receiver, oper at the top, and the air pumped from under it, the weight of the external air will be felt upon the back of the hand, and will prefs it clofe down to the receiver.
2. If a glafs bubble, containing a wine quart, be emptied of its air, and then nicely balanced, as foon as the air re-enters, it will preponderate, and will be about 17 grains heavier than when empty.
3. If two brafs hemifpheres be exhaufted, and the air thut out by a cock, they will require a force of about 15 pounds to every fquare inch to pull them afunder.
4. If a glafs bubble, with its neck immerfed in water, be exhaufted of its air, when the air re-enters, it will prefs upon the furface of the water, and force it up into the bubble.
5. Let a tall receiver be fet upon a moveable plate, to which is fcrewed a pipe with a cock, and exhauft it, then placing the end of the pipe in water, and npening the cock, the preffure of the external air will be feen forcing the water into the receiver, with great velocity.
6. Take a ftick of oak, hazel, \&c. with a hoop round one end of it, to hold quickfilver, and with

Wet leathers fix it in the top of an open receiver, fo as to be air tight, when the receiver is exhaufted, the weight of the air preffing upon the mercury in the lioop, will force it through the pores of the wood.
7. If a bladder be faft tied over the top of an open receiver, as foon as the air is fufficiently rarified below, the weight of the column above will break the bladder, with a confiderable report.
8. If a piece of hazel, having its ends cut very finooth, be fixed in the neck of an open receiver, and the lower end immerfed in water, upon exhaufting, the outward air, by its weight, will rufh through the pores of the wood, and rife through the water in fine ftreams.
9. If a fquare glafs bottle be e:haufted, it will be broken into fmall pieces by the preffure of the circumambient air.
10. A piece of plain glafs laid over an open receiver, will be broken in the fame manner.
11. If a barometer be placed under a tall receiver, as the air is exhaufted, the mercury will fall; when the air re-enters, it will rife again. From hence it is evident, that the mercury is fupported in the tube by the weight of the air: and therefore, in fine dry
weather, when the atmofphere is heaviet, it will ftand higheft ; on the contrary, in rainy weather when it is lighteft, the quickfilver will be loweft.

From this experiment it is found, that the air will fupport a column of mercury to the altitude of $29 \frac{\pi}{2}$ inches, at a mean. The diameter of the tube makes no difference, the reafon of which will appear evident, when we come to explain the laws of bydroftatics. For as the weight of a column of mercury, of any given diameter and altitude, is known, the weight of a column of air, of the fame diameter, is alfo known, and is, at a mean about 14 lb . upon every fquare inch; and upon every fquare foot, $\$ 8 \mathrm{cwt}$. or near one ton. - Now, if we fuppofe the furface of a middle-fized man to be 15 feet, it will follow, that he will fuftain a preffure of $13^{\frac{1}{2}}$ tons; which, were it not balanced by the fprings of internal air, could not be fupported.

But the particles of air being extremely fmall, enter into every part of our bodies, and by their elafticity, balance the preffure of the furrounding atmofphere.
12. This is evident by placing the hand upon an open receiver; for as foon as the preffure is deAtroyed, the air in the flefh, by its fpring, will fwell out the k in.
13. A fmall receiver, placed over the hole in the pump plate, as foon as the air is exhaufted, will be ftrongly preffed down by the column of air which is over it.
14. It is fuppofed by many, that this and other like effects, are caufed by fuction, or by formething within the glafs drawing it down through the hole of the pump plate. But this is falfe, as is Jorwn by experiment. For if a frnall glafs be placed on one fide of the hole, and covered with a larger, then while the larger is exhaufting, the fmall one will be loofe; but when the air is let in again, the large one will be fet at liberty, and the fmall one, by the weight of the air, will be fixed

There is no effect in nature, produced by any saufe, that can be called fuciin, except that appellation be falfely applied to the attration $f$ cobjuion.
15. Smoaking tobacco, and fucking the breaft, are performed by the preffure of the air. For a vacuum being made in the mouth by drawing back, or bending down, the tongue, the air, by its weight, rufhes through the pipe, in fimaking; and by preffing upon the breafl, in fucking, forcea the milk into the child's mouth.

The clagicity of the air will appear from the following experiments.

## RNEUMATICS*

16. If a bladder, containing a fmall quantity of air, be faft tied, and placed under the receiver, as the receiver is exhaufted, the bladder, by the expanfion of the included air, will fwell out, and at length appear full blown.
17. If a glafs bubble, having its neck placed in water, be covered with a receiver, as the air is exhaufted, that in the glafs, by its fpring, will make its efcape, and will be feen rifing through the water in large bubbles.
18. If an egg, having a hole in the fmaller end, be placed under the receiver, upon exhaulting, the air bubble contained in the great end, will, by its fpring, drive out the contents.
19. If an egg be funk in a jar of clear water, upon exhauting, the air will be feen to rife, from the pores of the fhell, in innumerable fine ftreams.
20. 'Take a bladder, containing a little air, put it in a proper veffel, and lay a weight upon it, cover the whole with a receiver, then work the pump, and the fpring of the air will be feen to raife the weight,

2 I . If a fhrivelled apple be placed under the receiver, and the air exhaufted, the air contained in the apple will expand itfclf, and caufe the apple to appear plump and fmooth.
22. If a piece of dry wood be funk in water, and covered with a recipient, upon exhaulting, the air, contained in the pores of the wood, will expand itfelf, and rife through the water in great quantities.
23. The experiment will fucceed with green wood, leaves, \&c. but the quantity of air thrown out will not be fo great. From this it is evident, that there are air veffels in vegetables.
24. If a piece of gold, \& c . be put in water under a receiver, on exhaufting, the air contained in the pores of the furface of the metal will expand itfelf, and appear all over the furface.
25. If a fmall bladder, with a little air and a weight in it, be faft tied, and funk in water, up in exhaulting, the air contained in the bladder will expand itfelf, and caufe the bladder and weight to fwim.
26. Alfo, if a cork be juft made to fink, by fixing lead to it, it will be brought to the top by the air bubbles adhering to its furface.
27. If a jar of clear water be placed under the receiver, upon exhaufting, the air will expand itfelf, and may be feen to rife from every part of the water: in innumerable bubbles.

## PNEUMMATICS.

28. If we ufe frefh beer inftead of water, the air bubbles will not burft, becaufe the beer is more vifcid, but will rife with a fine frothy head.
29. Join a tall receiver, exhaufted of its air, to the top of a veffel about half filled with water, a pipe going down near the bottom of the veffel ; open the cock, and the fpring of the air acting upon the furface of the water, will caufe it to rife in the re* ceiver with great velocity, and will make a beautiful. fountain.
30. If a phial of hot water be placed under the receiver, as foon as the preffure of the air is taken off its furface, it will begin to boil with great rapidity. A much lefs degree of heat is fufficient to caufe the phenomenon in a vacuum, than when under the compreffion of the atm, of phere. W'ater with my air pump will boil at $69^{\circ}$ of Farenheit's thermometer, and firit of wine at $52^{\circ}$ of do.

3:. If a fifh be put into a jar of water, and covered with a recipient, as foon as the preffure of the atmofphere is removed, the air contained in the air bladier will expand itfelf, and caufe the fifh to fwim: but it will not very readily die.
32. If we put a moufe, rat, cat, $\varepsilon: \mathrm{c}$. under the receiver, and exhauft the air, the animal will immediately die. From whence it appears, that air is abfolutely
abfolutely neceffary for fupporting the lives of thefe, and all other kinds of large animals.
33. But infects, reptiles, \&c. will not readily die in vacuo.
34. Air is neceflary for the fupport of fire and flame; becaufe burning coals, or a lighted candle, will inftantly go out in vacuo.
35. It is owing to the refiftance of the air, that light and heavy bodies do not fall equally faft. For a guinea and a feather will defcend to the bottom of a tall receiver, when exhaufted, in the fame time.
36. The mercury in a thermometer, placed under a receiver, falls during the exhaufting, and rifes again when the air returns.

See an ingenious accoust of thefe phænomena, in the Philofophical Tranfactions, for 1788, by Erafmus Darwen, of Derby, M. D.
37. That found is conveyed from place to place by the medium of the air, will appear by the following experiments.

If we place a bell upon the plate of the pump, and cover it with a receiver, and the bell be rung, the found will be much weaker than when in the
open air, though the receiver be not exhaufted. If the receiver be well exhaufted, the found will not be audible, except very near the pump; but as a perfect vacuum cannot be made, the fmall quantity of remaining air will faintly convey the pulfes to the glafs, which, by a tremulous motion, will convey them to the outward air. From this it appears, that found moves through the air, without the air being carried along with it.
38. That the preffure of the furrounding air upon the receiver is not the caufe of diminifhing the intenfity of found, appears by the following experiment.

Cover a bell with a receiver, in which let the air remain. Cover this with a larger receiver. Condenfe the air betwixt them, and the found will be equally ftrong, whether there be two or four atmofpheres thrown upon the furface of the firf receiver.

If an elaftic body be ftruck, or otherwife put in motion, it will continue to vibrate backward and forward for fome time. The particles of air, which are near it, will, by its quick vibrations, be put into the fame tremulous motion with itfelf, and they, in their approach to thofe that lie next them, will communicate it to them alfo; and fo on to a confiderable diftance, deperding on the intenfity of the Aroke, and the nature of the fonorous body.

Thefe

Thefe aerial pulfes, or waves, are propagated from the founding body, in concentric fpheres or niells, decreafing in denfity as the fquares of the diftances ircreafe. Heuce a perfon, at the diftance of one mile from a fonorous body, will hear the found four times as loud as he would do at the diffance of two miles, \&\&c.

The velocity of found, according to the moit accurate experiments, is at the rate of $1144^{2}$ feet per fecond. All founds, whether firong or weak, move with the fame degree of velocity, and nearly as faft when tiney move agaisf the wild, as when they move with it. But they may be lieard much further in the direction that the wind blows, than in the contrary.

The velocity of found increafes with the elaficity of the air, and is therefore fumething greater in fummer than in winter. Yet founds are more alle dible in winter than in fummer, becanfe the air is more denfe. For the fame reafen, found is much ftronger in a valley, than upon the iup of a mountain, where the air is lefs condenfed by the weight of the incumbent atmofphere.

As found is propagated from the fonorons body in all directions, if it happens to frike a minft meks, buildings, woods, \&c. the pulfes will be reflected back, and the found repeated, which is called an ccho.

## PNEUMATICS.

If a mufical chord be put in motion, all its bibrations, whether great or fmall, will be performed in the fame time; and therefore the chord, however Itruck, will always produce the fame note.

In order to produce different notes from the fame fting, either the length or the tenfion of the ftring mult be altered.

If we take eight mufical ftrings of the fame thicknefs and ftretch them with equal weights, and if we make their lengths as $100,88.8,80,75$, $66.6,60,533,50$, they will found the notes of the diatonic fcale, viz. C, D, E, F, G, A, B, C, yet the founds of the higher notes would be more agreeable if the ftrings were fmailer and longer, and their tenfion lefs.

If two frings perform their vibrations in the fame time, the note or tone produced is called an unifon, and is the moft perfect concord. If one ftring performs two vibratious while the other performs one, they will found an octave, which is the next perfect. If one performs three for the other two, they will found a fifth. If one four for the other three, a fourth. If one five for the other four, a third greater.

If two mufical chords, placed near each other, be tuned unifon, and one made to vibrate, the other
will vibrate alfo. If the ftring which is ftruck be an octave above the other, the two extremes of the other will found unifon with it, while the middle point remains at reft. In the fame circumftances the fame effect is produced by all kinds of fonorous bodies; for the vibrations of the air, when put into a tremulous motion by the founding body, agree exactly with thofe which may be produced by the body at reft, and the vibrations of this refting body, which, in fome faint degree, are caufed by the firlt impulfes of the vibrating air, are, by its correfponding motion, continually increafed.

That the air may be condenfed, is evident, from the following experiments.
39. Let a ftrong receiver, with a full blown bladder under it, be firmly ferewed down upon the plate of the pump; then, with a fyringe, or with the pump if it be of Smeaton's conftruction, force in a quantity of air, and the bladder will begin to contract, or flrivel up. Whence it is evident, that the air in the bladder is condenfed, or fqueczed into a lefs fpace than it poffeffed befure; and as foon as the cock is opener,, and the preffure removed, it will again expand itfelf, aad fill the bladder.

The conderfetion ought not to be too great, - when the reciver is of glars, let it fhould bart, which might be attended with L..d coniequences.

If only a double atmofphere be forced into a receiver of five inches diameter, and eight inches high, there will be a force of r (10lb. acting againft its inner furface; if a treble atmofphere, 336 clb .
40. If a glafs bubble, with its neck immerfed in quickfilver, be placed under the receiver, and a double atmofphere forced in, half the capacity of the bubble will be filled with quickfilver, and the air which, in its natural ftate, filled the whole capacity, will be compreffed into one half thereof.
41. If air be condenfed upon the furface of water in a ftrong veffel, it will caufe it to fpout through the tube of communication with a furprifing velucity, and will make a beautiful fountain, or jet d'eau.

The air is an elaftic fluid, capable of being expanded by heat, and contracted by cold. Hence of any part be heated, it will be rendered Specifically lighter than the adjoining air, and will therefore rife into the higher paits of the atmofphere ; and the neighbouring air, by its weight, will rufl into $i_{\text {ts }}$ place, and thereby a ftrean of air or wind will be produced. Thus we find the air rufhing through the key-hole, chinks, crevices, \&c. into a clofe roons where a grcat fire is made. And the rarefaction made by the heat of the fun, is the caufe of all the regular winds, whether general or periodical. For the air to which the fun is vertical, is rendered hotte:
hotter than in any other region, and is therefore conftantly rifing into the upper parts of the atmofphere, while the heavier air from north and fouth, is moving in to fupply its place. Under the equinoctial it blows nearly from the eaft point : but as the diftance increafes, it varies more and more on both fides, till about the 30th degree of latitude, where, on the north fide it blows from the N. E. and on the fouth fide from the S. E. But this is to be underftood only of open feas; for the direction is altered by hot fands, mountains, \&c. and the wind generally blows towards the land. Hence we have the reafon of the periodical trade winds, or monfoons, which blow fix months in one direction, and fix months in the contrary, as is more fully explained in the lecture.

## [ 40 ]

## LECTURE IV.

## PNEUMATIC CHEMISTRY.

This part of philofophy is more particularly confined to the chemical properties of the air, and aeriform fluids.

To diftinguifh thefe fluids from the common at. mofpheric air, they have been denominated gafes.

Like common air they are tranfparent, and permanently elaftic; but fome of them are abforbed by water in a fmall degree, others fo rapidly, that it is neceffary to make ufe of quickfilver in order to obtain and preferve them.

There are various kinds of gaffes; fome are natural others artificial productions. Their properties are alfo remarkably different.

All gafles are a combination of caloric with a particular bafis, either fimple or compound.

The mode of obtaining any kind of gas artificially, is by putting the proper materials in a flafl, the mouth of which is clofely fitted with one end of a bended tube, by means of a piece of cloth, leather, \&c. The other end of this tube is placed under the mouth
mouth of a jar, filled with water or quickfilver, and inverted in a bafon of the fame fluid.

## Carbonic Acid Gas

Is often found in deep pits, wells, \&c. It has commonly been called fixed air, from its exitting in an incorporated tate in various fubftances; but as this is nut peculiar to it, the term is not a proper appellation.

It may be produced by pouring fulphuric acid, diluted with water, on chalk, marble, fpar, or any calcareous fubitance.

It is copioufly produced by ale, \&c. in a fate of fermentation, and refts on the furface of the liquor till difturbed by agitation.

It is alfo produced in combultion, and by refpiration.

It is much heavier than common air, and may be poured out of one veffel into another like water.

It is readily abforbed by water, to which it gives a fine fparkling appearance, and enables it to become a folvent for iron.

Water, faturated with this gas, is efteemed highly D 3 beneficial
beneficial, and may be prepared to refemble the medicinal waters of Pyrmont, \&c.

Ale or beer, containing a due proportion of this gas, is brik and pleafant ; but deprived of it, becomes very infipid.

This gas, taken into the lungs, is fatal to animal life; it alfo extinguifhes flame.

Vegetables will not live in this gas; but water, faturated with it, and applied to their roots, is highly nutritive.

Limeftone contains a confiderable proportion of this gas in combination, which is difengaged in burning; hence the fuffocating vapour in the neighbourhood of lime kilns.

The lime thus burned, recovers from the atmofphere, in time, its proportion of this gas, and again becomes hard, upon which property depends its great ufe as a cement for building.

## Hydrogen Gas

Is fo called from its being one of the component parts of water. It has alfo been termed infammatle air, from its readily taking fire and burning.

This gas is frequently found in mines, where if a lighted candle be introduced into it, it explodes with great violence.

This gas, as well as the carbonic acid gas, is difengaged in combuftion, putrefaction, \&c. and therefore abounds wherever thefe $p$ oceffes are carried on. It alfo exits in the neighbourhood of marfhes, \&c. where it may often be feen burning.

It may be obtained by adding to a portion of iron diluted fulphuric acid, or more copioufly by pafing the fteam of boiling water over red hot iron.

Like other combuttible fubftances, this gas will not burin without common air. And if mixed with a due proportion previous to the light being applied to it, a detonation takes place, which will be louder in proportion to the qualutity of oxygen gas in the combination.

Though this gas will burn when the air has free accefs to it, yet it does not affit combultion in other fubitances; a caadle placed in this gas, unmixed, is immediately extinguifhed.

It is alfo unfit for refpiration, and has a very unpleafant fmell.

It is much lighter than common air, nearly as 12

44 NEUMATIC CHEMISTRY.
to 1; hence its ufe in filling baloons, which, by this being rendered fecifically lighter than the air, afcend.

Of this gas there are feveral varieties, arifing from the varied compofition of its bafis.

## Carbonated Hydrogen Gas,

Containing, in combination, a portion of carbon, may be obtained by paffing the fteam of water over red hot charcoal; alfo from the combuftion of wood, or any vegetable fubflance, in an iron retort, made red hot.

Coal produces this gas in great abundance, and when purified by paffing through water, and emitted through a proper orifice, it will burn with a clear flame, and gives a brilliant light.

Another variety of this gas may be obtained by fuffering common air to pafs through burning oil into an exhaufted recciver. This will burn without explofion.

Phofphorated Hydrogen Gas.
This gas is obtained by boiling a ftrong folution of pot-afh, in which is contained a fmall piece of phofphorus.

This

This gas is generated in confequence of the decompofition of the water, the hydrogen of which, uniting with a portion of the phofphorus, conflitutes the gas.

The neck of the retort mult be immerfed in water, and as foon as the gas makes its efcape through the water, it takes fire $f_{\text {Fontaneoufly, and leaves a curious }}$ curling ring of fmoke.

Suddenly mixed with oxygen gas (which requires great caution) it detonates.

## Sulphurated Hydrogen Gas

May be obtained by pouring muriatic acid, previoufy diluted, on a folution of fulphuret of pot-afh.

Or from a mixture of iron filings and fulphur, melted in a crucible, and afterwards put into a flafk, with diluted fulphuric or muriatic acid.

It has a very difagreeable fmell, and is abforbed by water, to which it communicates its peculiar fmell, and is found in feveral waters naturally, as a Harrogate, Wigan, \&c.

## Nitrous Gas.

To obtain this gas pour the nitric acid on brafs, copper, zinc, or iron.

It does not exift but in a fate of confinement, for on expofing it to the common air, it immediately combines with it, and lofes its gafeous form.

This gas is made ufe of for afcertaining the purity or goodnefs of air of other kinds, or to find what proportion of oxygen they contain.

When mixed with air perfectly noxious, no change takes place: but mixed with common air, a change in the colour enfues, and a fubfequent diminution in the quantity: if mixed with oxygen gas, a more remarkable change in colour takes place, and a much more confiderable diminution follows.

It therefore appears that the diminution is proportioned to the quantity of oxygen.

The union of the oxygen and the nitrous gas forms nitrous acid; hence upon combination, the change * from the fate of gas to the liquid form, and the confequent diminution of the preceding volume of gas.

## Nitrous Oxyd

Is a gas fimilar to the former in its conftituent parts, only differing in their proportion.

It is procured in its pureft form from carbonate of ammonia and diluted nitric acid; the folution afterwards
wards evaporated, then diftilled in a glafs retort with a proper degree of heat.

This gas is not, like the former, diminifhed by adding to it oxygen gas.

It is rapidly abforbed by water.
Animals confined in it will not live.
It may however be breathed for a time, and produces fingular fenfations. The experiment fhould be made with caution.

## Oxygen Gas

Is fo called from its being the principle of acidity. It is alfo the pait of atmofpheric air which ferves the purpofe of refpiration, and heace has been called pure, vital, or dephlogificated air.

It may be obtained from the fref leaves of plants, placed in water under a receiver in the light of the fun. Alfo from fulphuric acid and red oxyd of lead put together in a flafk: but moft copioufly from nitrate of pot-afh, or oyd of manganefe, in an earthen or iron retort, in a ftrong heat.

It is oh wined in the pured fate from oxygenated muriate of pot-afh in an earthen retort.

A candle burns in this gas with furprifing brilliancy.

A little pyrophorus thrown into it has a very pleafing effect.

A piece of iron wire will turn in this gas in a remarkable manner, and is melted during the combuftion; it is alfo oxydated, or converted into a caly.

A piece of red hot charcoal introduced into this gas is immediately affected by it.

A piece of phofphorws fet on fire, and immerged in this gas, burns with a degree of fplendour inferior only to the light of the fun.

A given quantity of this gas will fupport life much longer than the fame quantity of atmofpheric air, in the proportion of 6 to 1 .

This gas naturally combines with various metals, reducing them to a calx, or oxyd; this combination may be affifted by art, and the procefs more fpeedily carried on.

Such oxyds are heavier than the metal previous to the oxydation; their colour alfo varies with the proportion of oxygen colimbined.

Several of thefe metallic oxyds, as alfo the oxyds of fulphur, phufphorus, \&c. when combined with a greater proportion of oxygen become acids, fome of which are alfo capable of different degrees of oxygenation.

Oxygen is fo frongly combined with fome fub. ftances, as to be retained in all circumftances hitherto known.

Several of the acids which we have in a liquid furm, may, by depriving them of a part of their oxygen, be converted into the fate of gas; but in this ftate they are very difficult to confine: a few are permanent over water or quickfilver.

## Sulphurous Acid Gas.

To fulphuric acid add olive oil, and apply 2 little heat.

This gas is a compound of fulphur and oxygen, the latter of which exits in a fmalier proportion than in the fulphurous acid.

This gas is noxious, but poffefles the property of whitening filk.

## Muriatic Acid Gas.

Pour fulphuric acid on dried muriate of foda, or fea
falt. The product muft be received over mercury, and is the muriatic acid in the gafeous form.

It is rapidly abforbed by water, which, when faturated, forms the common muriatic acid.

When emitted into the atmofphere it produces a white cloud.

If into this gas be introduced fulphur, phofphorus charcoal, \&c. an inflammable air is produced.

When mixed with common air, the flame of a candle burning in it appears green, or light bluc.

## Nitrous Acid Gas

Is obtained by heating nitric acid, but it acts upon quickfilver; hence it is difficult to examine its properties.

It effervefces with effential oils, and is entirely abforbed by water, to which it communicates the properties of the nitric acid.

## Fluoric Acid Gas.

Pour fulphuric acid on pounded fluor fpar, or blue John (fluat of lime) in a leaden retort.

The product muft be received in a leaden veffel, as it diffolves glafs and filicious earth.

It is abforbed by water, and mult therefore be received over mercury.

This is the fluoric acid, which exits in the gafeous form in the common temperature of the atmofphere.

> Alkaline Air, or Gas,

Is ammonia in its pureft form.
To obtain it apply heat to volatile alkali, or mix muriate of ammonia and quicklime, apply heat, and receive the product over mercury.

This gas is rapidly abforbed by water.
Mixed with fulphurous acid gas, or muriatic acid gas, they unite, and form the common fal-ammoniac, which is precipitated like a white cloud.

Air is made noxious by the putrefaction of vegetables, or animal fubftances; by the burning of caudles; by animal refpiration; by the calcination of metals; by the effervelcence of iron-filings and brimftone; by the eflluvia of white paint; by exhalations from putrid marfhes, \&c. From hence it E 2 , is

## 32

 PN里UMATIC CHEMISTRT。is evident, that much air is daily corrupted, and without fome remedy, the whole atmofphere would at length become peftilential.

How air made noxious is again purified, or rendered fit for breathing, has long been a fubject of enquiry. But it appears, by fome late experiments made by Dr. Prieftly, that water and growing vegetables tend to reftore it to a fate of purity; which difcovery may be of the greateft importance to mankind.

## [53]

## LECTURE V.

## HYDROSTATICS.

Hydrostatics is that part of philofophy which treats of the properties, preffure, and laws of fluids.

A fluid is generally defined to be a body, whofe parts move freely among themfelves, and therefore yield to the leaft partial preffure. From whence it is fuppofed, that the particles of a fluid are fmall, round, fmooth, and hard. That fluids are porous, is evident from different phænomena.

Al fuids, except air, are incomprefible. That is, they cannot be forced or fqueezed into a fmaller fpace than what they naturally poffers*.

Hence it follows, that the ocean, and other deep waters, mult be every where of the fame denfity; that is, they will not be more denfe at the bottom than at the top. Yit the preflure will be in proportion to the depth, as is eafy to conceive, by fuppofing a fluid compofed of a number of thin plates, piled one upon another. For it is evident, that the higher

E 3
the

[^1]the column, the greater will be the preffure upon: the lowef.

This is proved by putting the open end of a narrow tube, into a wider one almoft filled with water; for, as the fmall tube defcends, the water is feen to rife in it, in proportion to the depth, though refifted by the fpring of the internal air.-

The preffure of fluids, at the fame depth, is every way equal; as upwards, downwards, and fideways; and is always in propurtion to the perpendicular altitude, without any regard to the quantity. That is, a fluice will be equally as much preffed in the fide of a pond four yards in diameter, as it would be if the pond was four miles in diameter.

If a piece of flat lead be held clofe to the bottom of an open cylinder covered with leather, and placed more than twelve times its thicknefs below the furface, it will be fuftained by the upward preffure of the water.

Let two round boards be put together with leather, after the manner of bellows; in the middle of the upper board fix a long tube, through which pour water into the bellows; and the higher board will be raifed by the upwa:d preffure, though a confiderable weight be laid upon it.

Let the upper board of thefe bellows be fixed, and to the bottom faften a wire, which coming through the tube, may be hooked to the end of a fcale beam; then put weights into the fcale at the oppofite end, till the water be feen rifing above the upper board. Now fuppofing the weight fuffcient for that purpofe be two pounds, then muft the bot. tom of the bellows neceffarily futtain a preffure of that weight, for the two fcales are juft balanced. If to thefe weights another pound be added, the water will rife in the tube, till the preffure at the bottom, being increafed to three pounds, reftores the equilibrium. In the fame manner, for every additional pound thrown into the fcale, the water will rife through an equal fpace in the tube, and preferve, by its preffare, a counterpoife.

For example, let us fuppofe that ewery pound put into the fcale raifes the water one inch in the tube; then if it be raifed 20 inches, the buttons mult be preffed with a force of 20 pounds, althou ${ }^{\text {b }}$ the abfolute weight of the water be not more than
2. pounds.

This very fingular effect, which is generally called the bydrofatic paradox, is thas accounted for. The upward preffure at the fane depth, is equal to the downward preffure, and therefure the fixed part is preffed upwards with a furce equal to the weight of a column of water of the fame altitude with that in
the tube, and of a diameter equal to the faid fixed part, which part re-acts upon the water, and caufes it to prefs upon the bottom with a force equal to the weight of a column of the before-mentioned altitude, increafed by the depth of the bellows, and of a diameter equal to that of the bottom.

Take an open glafs cylinder, over one end of which, let a bladder be tied flaccid. Fill the cylinder, to any height at pleafure, with water, and by its weight the bladder will be made convex at the lower fide. Put the cylinder gradually into a large veffel of water, and while the furface of that in the cylinder is higher than that in the veffel, the bladder will continue to be bulged downward. As foon as their furfaces become level, or of the fame height the bladder will be flaccid. If the cylinder be funk deeper, the bladder will become convex on the upper fide, by the fuperior upward preffure of the water in the veffel, becaufe its furface is the higher.

Let a fmall and wide tube be joined together at the bottom; pour water into the wide tube, and it will rife in the fmall one to the fame height, but not higher. Whence it is evident, that the preffure is in proportion to the perpendicular altitude. For, were it as the quantities which the tubes contain, the altitude in the fmall one fhould be, to the altitude in the wide one, as the fquare of the diameter
of the wide tube, is to the fquare of the diameter of the fmall one.

From hence we fee the reaton of conveying wa. ter by aqueducts; or why water may be conveyed to any place not higher than the fource, though a valley intervene, by means of a bended pipe. For it is evident the water will always rife to the level of the fpring, whatever the form of the pipe be.

The preflure of a fluid againft the fides or bottom of a veffel, may be computed as follows; for the bottom, multiply the depth in inches by .036172 and the product thence arifing, by the area of the buttom, in inches. This laft product will be the whole preffure upon the bottom, in pounds avoirdupoife.

For a fide; multiply the area uncer water, in inches, by .03617, and that again by the depth of the centre of gravity in inches; the product will be the preffure in pounds, as before.

The velocity with which water fpouts out at the fide or bottom of a veffel, by computation fhould be equal to that which would be acquired by a heavy body in falling from the furface of the water to the faid hole. But by experiments it is found to fall fhort (fee my Treatife on Mills, part third). If the fquare root of the depth in feet is multiplied by $5 \cdot 3$ the
the product will be the velocity in feet, and will always be as the fquare root of the depth.

A heavy body will fall through a fpace of 16.13 feet nearly, the firft fecond, and will thereby acquire a force which would carry it, with an uniform mo. tion, over a fpace of 32.26 feet per fecond.

Therefore, if a hole be made in the fide of a veffel, or through the breaft of a dam, at the depth of 16.13 feet below the furface, the water will fpout out, with a velocity of 32.26 feet per fecond.

The velocity with which water fpouts out at holes, made at different depths below the furface, is as the fquare root of thefe depths. As for example, fhould it be required to find the velocity with which a fluid would fpout through a hole 9 feet below the furface, it would be, As 4 (the fquare root of 16) is to 3 (the fquare root of 9) So is 32 (the velocity at 16 feet below the furface) to 24 feet, the velucity per fecond required.

Or, if the fquare root of the depth in feet, be multiplied by 8 , it will give the velocity, in feet per fecond.

The following table (which may be of fervice to thofe who are concerned in water works) fhews the velocity per fecond with which water fpouts
frore hives mate in the fine of a veffel, from one to fast feet below the furface.


The quantity of water difcharged at any depth below the furface, while the aperture remains the fame, will be as the velocity at that depth. As for rocample: Should $5 \cdot 3$ pints be difchargrd through a hole,
hole, one foot below the furface, in a certain times then an equal hole, made two feet below the furface, would discharge 7.49 pints in the fame time; and fo on, as in the table.

## Solids immerfed in Fluids.

If a fold be immerfed in a fluid, it lopes jut fo much of its weight as is equal to the weight of its equal balk of the fluid. Take a cylindric bucket, and a fold cylinder of brass, \&c. which will exact'y fill it. Let the bucket be fufpended from the end of a fcale beam, and the cylinder from the bottom of the bucket Balance them by putting weights i..to the oppofite fcale. Then place the cylinder in a jar of water, and the equilibrium will be deftroyed. Pour water into the bucket till it be full, and it will be reftored again. Whence it is evident, that the cyins der is refiled ty the weight fo the luik of wat r.

From this it appears, that if a body be lighter than water, bulk for bulk, it can ot defend, be. cause it is refiffed by the weight of its equal bulk of water. If it be heavier, it will lone fo much of its weight as is equal to the weight of its book of water, and defend with the reft. If it be the tame weight with water, bulk for bulk, it will remain at ref in any part of the water. Ail which is fern by final glads images, whole Specific gravities may be increased at pleafure.

Relative

Relative or Specific gravity is the gravity or weight of one body, compared with the weight of another, of equal magnitude.

If a cubic inch of gold be twice the weight of a cubic inch of copper, then are their fpecific gravities faid to be as two to one.

The fpecific gravity of any kind of matter is eafily found by the bydroflatic-balance. For if we fufpend the body, whofe fpecific gravity we would know, from the bottom of a fcale, by a fine thread, and then balance it exactly, firft in air, and then in water, it will be, as the difference between the weight in water and in air, is to the weight in air; fo is the fpecific gravity of water, to the fpecific gravity of the body required.

Hence, if the weight of the body in air, be divided by what it lofes in water, the quotient will thew how many times it is heavier than water.

In order to find the fpecific gravities of fluids, let a folid piece of glafs be fufpended from a fcale, as before, and exactly balanced in the air; if then it be immeried in different kinds of fluids, the weights put into the fcale over it every time, to refore the equilibrium, will exprefs the relative gravities of the fluids.

The fpecific gravities of different bodics, found by the above procefs, are expreffed in the following table.


The fpecific gravity of fluids may be found by pouring a little mercury into a bended giafs tube open at both ends, and then pouring into each leg a different kind of fluid, and in fuch quantities that the mercury in each leg may fand to the fame altitude; and if the fluids poured in be of different altituces, their fpecific gravities will be reciprocally as thofe altitudes.

The hydrometer is the molt convenient inftrument for difcovering the fpecific gravities of fluids. The only one made on true principles is always funk to the fame mark in the ftem, by weights placed on the top thereof. Hence the quantity of fluid difplaced in every experiment, is exactly the fame. If, therefore, we add the weight placed on the top, to the weight of the inftrument, the fum will be the weight of the fluid difplaced.

Example. If, when funk to the proper mark in water, the whole weight be 1000 grains; and if, when funk to the fame mark in rum, the weight be 928 , then is the fpecific gravity of the former, to that of the latter, as 1000 to 928 ; the temperature in each being the fame.

## [ 64 ]

## LECTURE VI.

## HYDRAULICS, \&c.

The fyphon, or crane, is a bended tube, which being filled with water, and then inverted, the outward leg being continued below the furface of the water to be conveyed through it, the water in the longer leg, by its weight, will begin to defcend, and that in the other, by the preffure of the air, will be forced after it, provided the altitude of the fyphon above the water, does not exceed 33 feet.

## Tantalus Cup.

The phenomenon of this cup is owing to a concealed fyphon, the higheft part whereof is lower than the top of the veffel, one leg reaching below the bottom, and the other communicating with the infide, near the bottom. As the cup is filled with water, the fyphon will alfo be filled; or the water will continue to rife in the cup, till it runs over the bended part of the fyphon, when the fyphon will begin to run, and the cup will be emptied.

Intermitting ferings are accounted for upon this principle. If a fyphon is formed in the earth, and communicates with fome cavity near the bottom; and if this receptacle be not fupplied with water as
faft as the fyphon will carry it off, it will then rife as in the cup, till the fyphon begins to run, which will continue till the cavity be emptied, or till the water falls below the orifice of the fyphon, and thus it will ceafe.

## The Fountain at Command

Is a cylindric veffel, about four inches wide, and five inches high, clofed at both ends. In one end are inferted, round the centre, five or fix fmall pipes, half an inch long, and one eighth in diameter. In the centre is foldered a tube fourteen or eighteen inches long, and half an inch diameter; one end of this tube goes near the top of the veffel, and on the other are foldered three claws to ftand upon, and which raife the lower orifice of the tube about half an inch above the bottom of a cup, in which it is placed ; in which bottom is made a fmall hole. The veffel being almoft filled with water through the long tube, and then inverted, it will run out through the fmall pipes into the bafon, and will rife till it touches the lower end of the wide tube, and then the fountain will ceafe to run; for as the air is kept from entering through the long tube, the preffure of that on the outfide will fupport the water in the veffel. But as the water is conftantly running out of the cup through the fmall hole in the battom, as foon as it falls below the orifice of the long pipe, the fountain will again begin to play.

## Common Pump.

The action of this pump depends upon the pref. fure of the air. A pifton, with a valve in it, being made to fit the bore of the pump, is put down near a valve which is fixed below in the barrel. A little water is poured upon it to make it air tight, and then, when it is lifted up, the column of air upon it is alfo lifted, and the fpring of that below in the pump is weakened, and the water, by the preffure of the air, is raifed in the barrel, until its weight, together with the fpring of the internal air, balances the outward atmofphere. The flroke being repeated, when the pifton is put down, the air above the fixed valve makes its efcape through the pifton walve. When it is raifed, the air below is again expanded, and the water raifed as before, \&c. until after a number of ftrokes the water is raifed above the piton and brought up into the ciftern, from whence it may run off.

In conftructing a pump of this fort, it is neceffary that the valve be not fixed too high, viz. not more than 20 or 24 feet, and in fome cafes not more than 15 feet above the furface of the water.

For although the preffure of the atmofphere will raife a column of water to the altitude of 32 or 34 feet (provided a perfect vacuum be made) yet the relucity with which it rifes, at any altitude above

24 feet, is too fmall where any confiderable quantity of water is to be raifed. At the furface of the well, the velocity with which it follows the pifton is upwards of 36 feet per fecond, but decreafes to the altitude of 34 feet where it is nothing.

If the wind-bore, or lower pipe, be made too fmall in proportion to the working barrel, the water will not rife with a fufficient velocity through the valve, to fill the vacuum in the working barrel, left by the pitton, in whieh cafe the pump will be much harder to work; for whatever the column below the pifton wants of 32 feet, it will be added by the preffure of the atmofphere.

The velocity with which the pifon rifes, its altitude above the water, and the diameter of the working barrel, are all to be confidered in computing the diameter of the wind bore, or the diameter of the valve.

Thofe who are not able to adjult the dimenfions by theory, fhould fix the valve near enough the furface of the water, as within 20 feet; for in this there is no difadvantage in working the pump, as many people fuppofe.

For hould it be required to raife water 40 feet, the weight of water to be lifted every ftruke will be the fame, whether the fpear be 15 or 30 feet long.

In the firf cafe there will be but half the quaritity of water upon the pifton, that there will be in the fecond, but as the weight upon the pifton at every ftroke, is equal to the weight of a column of water of the fame diameter with the pifton, and of an altitude equal to the diftance between the furface of the water in the well, and the furface of that in the ciftern, it can make no difference in what part of the pump the piton plays, provided it be near enough the bottom: for though the water be forced up the lower part of the pump, by the weight of the atmofphere, yet the faid part is firft exhaufted of its air by the pifton, which is conftantly preffed by the column of air above it with a force equal to the weight of the column of water below.

From hence it is evident, that while the working barrel remains the fame, there can be no advantage in contracting either the lower or upper part of the the pump : for it has been already proved, that while the bottoon or pifon remains the fame, the preflure is in proportion to the altitude.

> Forcing Pump.

In this pump, the pifton is folid, or without a valve. A pipe with a valve in it is fixed in the fide of the pump, jut above the fixed valve; fo that when the pifton is pufhed down, the water is forced out at the fide pipe, and is hindered from returning
returning by the valve. The fide pipe may be of any length required, and by it the water may be forced to the tops of buildings, \&e.

## Lifting Pump.

In this pump, the fpear goes in at the bottom, is wrought by means of a frame, and can therefore only be ufed in deep waters.

## The Draining Pump

Is made fquare, with a valve in the bottom; it is moftly wrought in an inclined pofition, the pifton is made in the form of the fruftrum of a fquare pyramid, the edges are fixed with cords to the fpear. When it is lifted up, the water preffes it clofe to the pump, but when it is pufhed down, the fides bend in, and give way for the water, fand, gravel, $\& c$, to rife.

## Archimedes's §crew

Is a tube open at both ends, coiled round a cylinder. When it is to be ufed it is placed in an inclined pofition, with the lower end in water, and upon turning it round, the water is brought out at the top.

## Gervis's Engine

Confints of two buckets fufpended from wheels, which have their diameters proportioned to the af: cent and defcent. When the machine is at reft, the
tops of the buckets are nearly upon a level: they are fupplied with water at the fame time, but in fuch a manner, that the bucket which raifes the water is firlt filled, after which it runs over into the other. As foon as this has received a fufficient quantity, it begins to defcend, and raifes the other, full of water, which, when at the top, empties itfelf through a valve (opened by a lever ftriking againft a ftud) into the refervoir. At the fame time the water runs out of the other bucket through a valve opened by a fimilar contrivance. When both are emptied, they return to the place where they reccive the water.

> Dr. Barker's Mill.

The cylindric mill is a tall upright tube, into which, near the bottom, and on oppofite fides, twe horizontal tubes are fixed.

When the water (which runs in at the top) has filled the arms and cylinder, the preffure againft the infides of the arms will be as the height of the cylinder. Suppofe the altitude to be 20 feet, the preffure upon every moch will be 10.81 b . If an aperture of 6 inches in area be made in each arm, on contrary fides, and near the ends; the preffure on that fide of the arm will be diminifhed 64.81 b but will remain the fame againft the other fide; hence there will be a force of twice 64.8 lb . or 129.6 lb . acting at the ends, to turn the machine round.

The Power of the above Mill.
Let $a=$ the area of one aperture.
$b=$ the length of one arm.
$d=$ the altitude, in inches.
$l=.57^{870 z}$. avoirdupoife, the weight of a cubic inch of water.
$v=$ velocity per fecond.
$n=$ diftance of the refiftance from the centre.
Then will $a d l=$ the preffure when the mill is at reft. And, As $n: b::$ adl $: \frac{a d l b}{n}=$ the force at $n$.

If we wifh to increafe the force by increafing the depth, while the ftream remains the fame, the aperture at the buttom mult be inverfely as the fquare root of the altitude.

Suppofe we make the depth $=4 \mathrm{~d}$.
Then As, $\sqrt{d}: v:: \vee 4 \bar{d}: \frac{2 v \sqrt{d}}{\sqrt{d}}=2 v$, hence $\frac{a}{2}$ muft be again divided by 2 or $\frac{a}{4}$ fur the area of one aperture, and the force or power of the mill will be exprefed by zald, which is doubie what it was in the firt expreffion, or as the fquare root of the altitude.

Hence it appears, that the force will be as the fquare root of the altitude, while the quantity of water remains the fame.

But if the aperture remains the fame, and the water remains fufficient to fill the mill, the force will be as the altitude.

## Centrifugal Machine.

Erfkine's centrifugal pump confifts of an upright tube, which has a valve at the bottom. Into this tube are fixed two tubes, or arms, at the top, and oppofite each other. There is alfo a hole in the upper fide of one of the arms, through which water is poured, till the whole is filled; it is then clofed, and to fupport the water in the arms, each is furnifhed with a valve. Then, by means of wheels and cogs, it is turned quickly round a perpendicular axis. The water in the arms acquires a centrifugal force; preffes open the valves, and flies out, and to fupply its place, the water is raifed through the upright tube, by the preffure of the atmofphere; hence it is evident, that this pump cannot raife water much above 30 feet, nor ought it to be made much more than 20 feet high.

As all the methods of computing the force of the centrifugal pump, that I have feen, are excecdingly erroneous, and founded upon falfe principles, I have added the following note.

The Power of the Centrifugal Pump.
Let $a=$ length of one arm in feet.
$b=$ height in ditto.
$y=a \sqrt{7}$ the centre of gyration
$q=3.14: 6$.
$t=$ time of a revolution in feconds.
$d=16.1$ feet.
Firf, $\frac{2 y q^{2}}{d t^{2}}$ expreffes the centrifugal force of the water compared with its weight.

Secondly, $\frac{2 y q^{2}}{d t^{2}} \times a$, the length of one arm gives the length of a column, the preflure of which is equal to the centrifugal force.

Thirdly, $5 \cdot 3 \sqrt{\frac{2 a y q^{2}}{d t^{2}}}-b$ expreffes the velocity of the effluent water.

$$
\text { Example. Let } a=4 ; t=\frac{1}{2} ; b=15
$$

Then, $\frac{2 a y q^{2}}{d t^{2}}=34.1852$, from which take $b=$ 15, and there remains 19.1852 , the fquare root of which is $4 \cdot 3^{8}$, which multiplied by $5 \cdot 3$ gives $23 \cdot 2$ I feit, the velocity of the water per fecond. Let the area of the ends of the arms be required when the
above
above pump raifes one gallon per fecond. Let $v=23.2 \mathrm{I}$ feet $=278.5$ inches $; s=141$ the inches in half a gallon, the quantity thrown out by one arm; $x=$ area of the end $=\frac{s}{v}=.5062 \mathrm{in}$. ches, and the diameter $=8$ inches.

Which pump will raife 60 gallons per minute to the altitude of 10 feet, but will be too hard labour for one man.

## Nerubam's Water Engine.

The engine generally made ufe of for extinguifhing fires, confifts of two pumps, which alternately force the water into a ftrong air veffel, in the top of which a pipe is fixed, and extends near the bottom. When the water is rifen in the veffel to the bottom of the pipe, the air cannot make its efcape, but as the water rifes, it compreffes the air in the crown of the veffel, which, by its fpring, forcibly acts upon the furface of the water, and caufes it to fpout through the pipe with an excceding great velocity, and by means of a proper contrivance at the top, may be thrown in any direction at pleafure.

## The Cbain Pump,

Or rag pump, confifts of a number of pieces of wood
wood ot iron, of the fame fize, which are connected by a ftrong chain, paffing through the centre of each, the ends of which are linked faft together. This chain is ftretched by two fmall wheels, having teeth of a proper fize to admit the pieces of wood; fo that by a winch, fixed upon the axle of the upper wheel, the chain is caufed to afcend on one fide, and defcend on the other. On the afcending fide they rife up a clofe groove, into which they are exactly fitted, fo that they take with them as much water as can be contained between each piece of wood and the next. When they have reached the top, the water runs into a trough, which conveys it away.

## Bucket Engine.

The working part of this engine is made with a beam in the form of an ifoceles triangle, the vertical angle of which is very obtufe. The asle is placed in the bafe, and on the two equal legs are faftened two troughs, to the ends of which are hung two large buckets, with a valve in the bottom of each.

By a proper pipe the water is delivered exactly over the axle, and a divifion being placed in the troughs at the vertical angle, it can only run down into one bucket at once. The buckets are fupported by a catch, till nearly full, and then they fall with a jerk alternately, as the diviifion is firft
thrown on one fide the ftream, and then on the other. When the buckets are at the bottom, they are emptied through the valves, opened by ftuds.

This is only the machinery for working either common or forcing pumps.

## [77]

## LECTURE VII, \& VIII.

## ELECTRICITY

Is a branch of philofophy which may be confidered as in a fate of infancy; for although a very great number of experiments have been made, and a great variety of facts are afcertained, yet they are differently accounted for by different electricians.

Some confider the effects of electricity to arife from the exiftence of two forts, or powers, diftinguifhed by the terms vitreous and refinous.

Others confider the fame effects owing to one kind of electricity ouly, but exifting in unequal proportions.

All however agree that the electric fire, or electric fluid, is naturally inherent in all bodies; but exilts in a quiefcent itate, till by fone mude of excitation it is difengaged, or the natural equilibrium is deftroyed.

The excitation of vitreous or refinous fubftances, is attended with the appearance of electric fire; bit fubflances attracted by the one, are repelled by the other: hence the diftinction of the vitrecus and refinous powers, or, as termed by others, the pofitive and negative.

## ELECTRICITY。

All fubftances, which, by excitation, fhew any figns of electricity, are called electrics; and fuch fubftances as exhibit no appearance of it under fimilar circumftances, are called non-electrics.

Electrics will not convey the electric fluid from one body to another, and are therefore called nonsonductors.

Non-electrics have a contrary effect, and are of courfe termed conductors.

Amongtt the former are glafs, refins, amber, fulphur, all the precious flones, filk, cotton, feathers, hair, \&c.

Amongtt the latter are metals of all kinds, water, and moft liquids, \&c.

Non-conductors, when heated to a certain degrees. become conductors, and lofe the power of excitation.

A fmall quantity of electric fire may be rendered. vifible by the

> Electrophorus,

Confifting of a piece of common window glafs, and 2 fmall metallic plate, fomething lefs than the glafs; which
which plate is furnifhed with a piece of filk, or other electric, to fufpend or hold it by.

The plate of glafs is then excited, and afterwards the plate of metal fet down upon it, and fmall fparks may be taken from the metal.

The quantity which can be thus collected is very trivial compared to the quantity which may be collected by the

## Electrical Macline.

This is a globe or cylinder of glafs, fo fitted up, that it may be turned round upon its axis, and at the fame time moderately preffed by a cufhion covered with filk or leather, and having a piece of filk attached to it which will reach over the cylinder.

Electrical machines are alfo made with circular plates of glafs, as alfo by turning pieces of filk over rollers, \&c.

Metallic bodies are faid to be infulated when fufpended by, or refting upon, electrics.

Metallic bodies, when infulated, may have their quantities of electricity increafed, which, at the approach of a ball of metal, \&cc. will make its efcape
with a fnap, and will fhine or appear like a fpark of fire.

In order therefore to accumulate or to condenfe the electric fluid, conductors are infulated and adapted to the machine, fo that by means of points they may receive the electric matter as it is collected, and retain it for the purpofe of making experiments.

If the infulating pillars were perfectly dry, and no moifture in the atmofphere, the electric matter might be retained a great length of time, becaufe dry air is no conductor; but a very fmall degree of moifture on the furface of the pillar would convey the greateft part of the electric fluid down upon the floor.

If the air be charged with moiture, it becomes a tranfporter of the electric fluid, and conveys it away nearly as falt as it can be coilected.

Hence the very great difference between dry clear weather and a damp atmofphere for conducting electrical experiments.

Bodies which contain unequal portions of electricity, attract each other; if equal portions, they repel.

If the machine be excited, and a feather held at fume diffance, it will be attracted.

If the feather be held by a thread, which is a conductor, it will remain attached to the machine, conveying away the electric fluid; but if it be fufpended by a filk cord, it will be attracted and repelled alternately.

If two pith balls be fufpended by a thread from the conductor, they will be equally charged by the electric matter, and repel each other; but will both be attracted by any other fubftance not electrified.

A glafs tumbler, applied to the conductor, may have a portion of electricity thrown upon its furface. If it be afterwards inverted over a few pith balls, they will be attracted and repelled alternately for a confiderable time.

Fibrous bodies, as feathers, tufts of filk, \&c. placed upon the conductor, are powerfully affected by the electric fluid.

A piece of leaf gold may be fufpender hetween a ball and the conductor without touching either; or it may be caufed to vibrate betwixt the two.

Figures, cut out in various forms, will alfo be attracted and repelled.

Bells, fo fufpended that one may be electrified, and
and the reft not fo, and having balls of ivory fufpended betwixt them, will ring with a very fmall portion of electricity.

Upon the principle of this repulfion are conftructed

## Eleatrometers,

For meafuring the ftrength of an electrical charge, or indicating its prefence, of buth which kinds there are various contrivances.

The electric fluid is thrown out or received by points, according as the point is attached to the body which is charged or prefented to it.

A pointed wire, fixed in the conductor, throws out a ftream of electric matter, which may be dif= tiactly felt by the hand; or if the flame of a candle be prefented to it, the flame is blown out of its. upright direction.

Small vanes, or wheels, made of paper, and pioperiy fufpended, will be turned round by this ftream iffuing from the point.

In a dark room the fream of electric fire may be feen, illuminating the point; and there is a very obfervable
obfervable difference between a point emitting and receiving the electric fluid.

Water, being a conductor, may be clarged exactly like a piece of metal, and the electric fire will, at the approach of a ball, fnap from the furface of the water.

The quantity of electricity accumulated by a machine, and retained by the largeft conducturs, is inferior in effect to the

## Leyden Pbial,

Which is a common bottle, or jar, whofe furface is partially covered with tinfoil, both on the infide and outide.

If a jar thus prepared be infulated, and connected with the conductor, it will not receive any charge of electricity; but if, while one fide communicates with the conductor, the other communicates with the earth, the jar will then be fpeedily charged.

The charge is diffipated by connecting the two fides by meañs of a difcharging rod, chain, \&c.

But if the commnication between the fides is not complete, no difcharge takes place.

Therefore

Therefore a charged jar may be touched either infide or outfide with perfect fafety, provided the contrary fide be infulated.

A jar will be charged indifferently on either fide, the outfide receiving equally'as ftrong a charge as the infide.

A number of thefe jars connected with the conductor at the fame time, form the elearical battery.

The effects produced by a battery of this kind are very ftiking, and require much caution, as perfons have fometimes been feverely hurt by inadvertently receiving the fhock.

The difcharge from a battery, being fuffered to pafs over a piece of glafs, will break it into fmall pieces.

If fuffered to pafs over a piece of leaf gold upon glafs, it will melt the gold into the glafs.

If paffed through a book, will make a perforation through all the leaves.

If paffed through gunpowder, will fet it on fire, \&c. \&c.

A piece of flat glafs, partially covered with tinfcil, will
will receive an electrical charge, and has generally been called the

## Magic Piture.

Any perfon, attempting to touch the engraving which covers the-tinfoil, receives the fhock.

Any number of perfons, taking hold of hands, may receive an electric difcharge, the effects of which, when moderate, are only momentary, and is felt moft feverely in the joints.

A perfon may alfo be electrified fimilar to the conductor, by ftanding upon an infulated fool.

A very fmall fpark will fet fire to alkohol, or fpirits of wine, warmed a little.

The electrical piftol, being charged with a proper quantity of hydrogen gas, will take fire by prefenting it to the conductor.

Electricity has been applied to various medical purpofes, and in many cafes with very good effect.

Any part of the body may be electrified, withove fuffering the difcharge to pafs over any part but what is intended.

## The Thunder Houfe

Is a fmall model, intended to exhibit the effects of electricity, and to prove that fimilar effects are produced by it and by lightning, differing only in degree.

Various experiments may be made with this and other models, by which the fafety of buildings, having conductors, is demonftrated.

Water being a conductor of the electric fluid, rain brings down confiderable quantities of it in a thunder ftorm, and its prefence is indicated by the rain electromer, or more fenfibly by the electromer invented by Bennett.

Water, when electrified, and flowing out from a fingle aperture, is, by the electric fluid, difperfed and converted into a fhower.

From the procefs of charging the Leyden phial ${ }_{2}$ it appears that when one fide is electrified pofitively, the other is electrified negatively.

Hence, if the upper regions of the atmofphere contain more than their common quantity, the furface of the Earth fhould contain lefs, and vice verfa, which has always been obferved to be the cafe in thunder ftorms.

From modern obfervations it is certain, that lightning is a large quantity of electricity, paffing between bodies which contain unequal portions thereof. Sometimes defcending from the cloud to the Earth; fometimes rifing from the Earth to the cloud, \& \& .

Lightning always precedes the thunder, and is the caufe thereof. It may be confidered as a ball, moving through the air with a velocity fufficiently great to leave a vacuum behind it. The air, which was divided and condenfed in the vicinity of the paffage, by its elafticity, immediately coalefces, and produces the noife.

The duration of the thunder-peal is accounted for, in the moft fatisfactory manner, from the progreffive motion of found; not by reverberation, or zones of inflammable air, as fome have fuppofed.

If a lightning paffes from cloud to cloud in various directions, before it reaches the Earth, the time of this paffage is momentary.

The velocity of light is 200,000 miles in one fecond; that of found, 1142 feet. Hence the lightning will be feen the very inftant that it moves. But if no part of the vacuum fhould be nearer than one mile, it would be about five feconds before the

## ELECTRICTTX.

found could be heard: or there would be five feconds between feeing the lightning, and hearing the thunder. And if another part of the vacuum fhould be at the diftance of two miles; from that part, the found would require ten feconds to pafs over it. Hence the thunder-peal would in that cafe continue five feconds. And by meafuring the interval between the lightning and the beginning of the thunder, we may nearly eftimate the diftance of the neareft approach of the lightning, to the place where we are. And the number of feconds between: feeing the lightning, and the end of the thunder, will give us the greatef diftance of the fame lightning. When the interval is one fecond; the diftance will be 381 yards.

To fecure buildings from the effects of lightning, a bar of metal ought to be fo placed, that one end may be elevated above the higheft part of the building, and the other funk deep in the earth, or carried into water.

The electric fluid becoming vifible in paffing over electrics, many curious devices and illuminations may be exhibited by means of the electric fpark, as fpirals, letters, conftellations, \&c.

The paffage of the electric fpark has alfo the effect of rendering bodies partially tranfparent.

If the air be exhaufted from a tube of glafs, and the tube afterwards applied to the conductor, the electric matter will pafs freely, and is the greateft refemblance of the aurora borealis, or northern lights.

Thefe and fome other experiments require a dark room, in order to fee them to any advantage.

Two lectures are given upon this fubject, illufrated by experiments made with a cylinder 19 inches itiameter, and cinduct.rs of 12 inches diameter, with ither neceffary apparatus.

## [ 90 ]

## IECTURE IX.

## OPTICS.

It is manifet, from a number of experiments, that light is a real fubfance, or body, and that it confifts of particles inconceivably fmall; otherwife they could not pervade the pores of glafs, diamond, \&c. The wifdom of the Creator is abundantly manifeft, and perhaps as fully difplayed in the fmallnefs of the particles of light, as in any part of the creation. Light is emitted from every point in the furface of a luminous body, in right lines, and with a velocity of 200,000 miles in a fecond of time, which is inconceivable and unparalleled.

As light is propagated in ftraight lines, it muft decreafe, as the fquares of the diftances increafe; that is, if at the Earth we have a certain quantity or degree of light and heat from the Sun, then at $t$ wice that difance there will be but $\frac{1}{4}$ part of that quantity ; and at three times the diftance but $\frac{1}{9}$ part thereof; but at half the diftance there will be four times as much, and at one third of the diftance 9 times as much. So it will be found, that at Mercury there is about $6_{\frac{1}{2}}^{1}$ times the light that we have; at Venus near twice as much; at Mars about $\frac{1}{3}$; at

Fupiter $\frac{2}{2}$; and at Saturn $\frac{1}{10}$ part of the light and heat which we have.

If a ray of light, coming from the furface of a luminous object, falls upon a plain mirror, it will be fo reflected, that the angle of reflection will always be equal to the angle of incidence.

Light, alfo, in paffing out of one medium into another of different denfity, is refracted, or bent out of a ftraight line, and the more fo as the medium is more denfe.

The white light of the Sun is heterogeneal, or of different kinds, and each kind differently refracted, or bent out of its way in paffing through the fame medium, and appears alfo of a different colour. Thefe rays whioh are leaft refrangibic, excite the idea of red; the fecond fort, of orange; the thind, of yellow; the fourth, of green; the fifth, of blue; the fixth, of indigo; and the feventh, of viilet.

If a beam of the Sun, coming through a fmall hole into a dark room, fall upon the fide of a triangular glafs prifm, it will, upon the oppofite fide of the room, form an oblong and coloured image of the Sun.

Now if thefe different forts of light were not differently
differentiy refrangible, the image, after refraction, would contimue to be round, but we find it is not; and that the red light is leaft, and the violet the moft refrangible.

That thefe different kinds of light really exift in the light of the Sun, and that the image is not fpread out by the incident rays being difturbed, fhattered, or fplit by the glafs, appears from a number of experiments, as Jerwn in the lecture.

Light, falling upon the furface of bodies, is in part reflected, and in part imbibed. If the parts of a body be fo difpofed as to reflect all the rays which excite the idea of red, and imbibe the reft, that body muft appear red. If a body reflects all the green rays, and imbibes the reft, it muft appear of a green colour, \&c. Every body, therefore, appears of fuch a colour as would be produced by a compofition of the different kinds of light which it reflects.

Bodies, which reftect one kind of light, and refract the others, will appear of different colours by refraction and reflection.

The phænomenon of the rainborw is caufed by the Sun's rays being feparated by the drops of falling rain, as is 乃ewn in the legure, by filling a glafs globe
with water, and letting a beam of the Sun, coming through a fmall hole irto a dark room, fall upon it.

If parallel rays: fall upon a concave mirror, they will be reflected back to a point, diftant from the. vertex of the mirror equal to half the radius of concavity. This is called the filar foous, or burning: point; for the rays of the Sun, meeting in this point, burn very intenfely. There is alfo in this point an image formed of the object from which the rays proceed. But if the object be brought nearer, fo that the rays do not fall parallel, the image will not be formed in the folar focus, but further from the mirror; and as the object is brought nearer, the image will recede, till they meet in the centre of the fphere of concavity, where they will be of equal magnitude, but the image inverted.

As the object is brought nearer the focus, the image will contantly fly off, till the object arrives: at the focus, and then the rays will. be reflected parallel among themfelves, fo that no image can be formed. If the object be between the focus: and mirror, the image will be formed behind the mirror, erect and magnified.

> Parallel rays, falling upon a plain glafs of equal thicknefs,
thicknefs, cannot be converged to a focus, but will proceed parallel after refraction.

If one fide be plain, and the other convex, parallel rays will be converged to a point, at a diftance equal to the diameter of the fphere of convexity. If it be double, and equally convex, they will meet in the centre of the fphere of convexity.

In thefe points images will be formed of the objects which the rays proceed from. If the objects be brought near, the images will be formed further from the glaffes than the abovementioned points.

If the diftance of the object be equal to twice the focal diftance of the glafs, the image will be formed at the fame diftance on the other fide, and of the fame magnitude with the object, but inverted.

Concave glaffes do not form images; but parallel rays, after refraction, proceed diverging as if they came from a point, diftant from the glafs, equal to the diameter of the fphere of concavity, if it be a plano concave; but as if they came from the centre, if it be a double concave.

The buman eye is of a globular form, and confifts of three bumours; the aqueous, cryffalline, and

gitreous:

witreous. Parallel rays are by thefe converged to a focus at the bottom of a perfect eye, and an image is painted of the object they proceed from, upon the retina. But if the eye be too convex, the rays will meet before they reach the retina; if too flat, they will tend to a point beyond the retina. The firft is remedied by concave glaffes, or by holding the object very near the eye; the laft by convex glaffes.

If an object be placed in the focus of a convex glafs, the rays, after refraction, will proceed parallel among themfelves; and an eye placed on the other fide, will have a diftinct view of the faid object, which will alfo appear to be magnified: for a perfeet eye cannot fee any thing diftinctly nearer than 8 inches. Therefore if the focal diftance of the glafs be half an inch, the apparent diameter will be increafed 16 times; if $\frac{x}{4}$ of an inch, 32 times. Hence they become of ufe as magnifiers, or fingle microfcopes, for viewing fmall objects-

A compound microfope has a fmall object glafs fixed in one end of the tube, and an eye glafs in the other end; the object is placed upon a flage a little further from the glafs than the focus of parallel rays. By this glafs an image is formed of the object in the tube, and is as much magnified in length as the diftance between the image and glafs, is
greater
greater than the diftance between the otject and glafs; which fuppofe 8 times: then if the eye glafs be one inch focal diftance, the image by it will be magnified 8 times alfo, and by both glaffes 64 times in length. In moft microfcopes, a third glafs is added to increafe the field of view.

The magnifying power of the folar microfoope is computed by dividing the breadth of the room by the diftance between the object and glafs. Suppofe the firt be fix yards, and the laft half an inch, then will the object be magnified 423 times in length, $186,62+$ in furface, and $80,621,568$ times in folidity.

The camera obfcura is made of various forms and fizes. It is intended to exhibit a painting of fuch objects as are before it. A fingle convex glafs forms this painting, and the box is always fo contrived, that the glafs can be removed to its proper focus, from the fcreen on which it is formed.

A perfpecrive glafs has in one end a convex object glafs, and in the other a concave eye glafs, which is placed at its focal diffance within the foous of the object glafs. Let the focal diftance of the object glafs be 6 inches, and that of the eye glafs I inch; then the diftance between them will be 5 inches. The magnifying power of this inftrument

* computed by dividing the focal diftance of the object glafs by that of the eye glafs.

The aftronomical telefoope has in one end an object glafs, by which the rays are converged to a focus, where an image is formed of the object they proceed. from. This image is viewed by an eye glafs, placed at its focal diftance from it, in the other end of the tube; and is as much magnified as the focal diftance of the object glafs is greater than the focal diftance of the eye glafs. All objects feen through this telefcope appear inverted.

The common terrefirial telefcope has three eye glaffes of the fame focal diftance, by which tne image is viewed erect. Its magnifying power is computed the fame way as the laft.

It is an imperfection in refracting telefcopes, that heterogeneal light is not refracted to the fame point in the axis of the object glafs; otherwife the focal diftance of the eye glafs might be be very fmall, and the magnifying power very great.

This imperfection is in part remedied in Doland's patent telefcope, which is a very great improvement of the common refracting one.

The reflecing telcfoope is a wide tube, open at one
end, and in the other is fixed a concave mirros with a hole in the middle. Rays of light falling upon this are reflected back, and crofs in its focus: after which, in a diverging flate, they fall upon a fmall concave, placed nearly at its focal diftance from the focus of the great mirror, by which they are reflected back through the hule in the great mirror, and fall upon a convex glafs, by which they are convelged to a focus, and form an image which is viewed by an eye glafs in the end of the tube. This telefcope magnifies 8 or 10 times as much as a refracting telefcope of the fame length.

The magic lanthorn has a large convex glafs in one fide, and a candle being placed in its focus, the rays, after refraction, proceed parallel to each other, and illuminate a traufparent painting. At a diftance, in the end of a tube, is fixed another convex glafs by which the rays are converged to a fucus, and form an iniage of the painting, vally magnified, upon a white fheet, on the fide of a dark room.

## [99]

## LECTURE X,

## MECHANICS.

This fcience treats of motion; explains the laws obferved by moving bodies; and teaches how to compute the force of the mechanical powers, whether fingle or combined, in machines. By this fcience the utmof improvement is made of every natural power, and the various elements made fubfervient to the purpofes of man.

There are three laws which are obferved by all moving bodies whatever.

The firt is, That every body endeavours to continue in a flate of $r^{2} f$, or moving uniform'y in a right line.

The fecond is, That the change of motion is always proportioned to the generating force impreffed, and is always made according to the right line in which that force is impreffed.

The third is, That adion and re-ation are equal, and in contrary directions.

Of the defcent of bodies in non-reffing mediums.
A body left to itfelf begins to defcend, or is carried toward the centre of the Earth, by the
power of gravity. This power acts conflantly upon all bodies in proportion to their quantities of matter: hence bodies, containing unequal quantities of matter, will defcend with the fame velocity. A body, in one fecond of time, will defcend through a fpace of 16.13 feet; at the end of this time, were the attraction to ceafe, it has acquired a velocity which would carry it with an uniform motion over a fpace of 32.26 feet in the next fecond: but the attraction of gravitation acting conftantly upon it, its motion continues to be accelerated, and it is carried over a fpace of 48.39 feet, or three times as far as in the firft fecond. From hence it appears, that falling bodies will be conftantly accelerated; that the fpaces fallen through will be as the fyuares of the times, or as the fquares of the velucities, viz. if a body in a certain time falls through 16 feet, in twice that time it will fall through 4 times 16 feet, in three times the time, through 9 times 16 feet, \& c the momentum of a falling body is always as the time of velocity. When the velocity is the fame, it is as the quantity of matter, and is found by multiplying the quantity of matter by the velocity.

## Of bodies difcending down inclined planes.

As the length of the plane, is to the height thereof, fo is the fpace paffed over by a faling body, to the fpace defcended through on the furface of the plane in the fame time. And as bodies are carried down the inclined plane by the power of gravity
gravity, it is evident they will be equally accelerated, as well as thofe which fall in perpendicular directions; that is, whatever fpace they pafs over in one fecond of time, they will in two feconds pafs over four times that fpace, \&c. and the velocity at the loweft point will be equal to that which would be acquired by a perpendicular defcent through the altitude of the plane.

While the altitude of the plane remains the fame, the velocity at the loweft point will always be equal, whatever the length be: fo that if a body defcends down a number of contiguous planes, or down a curve, the velocity at the bottom, as alfo the momentum, will fill be equal. The times of defcent dowa planes of the fame altitude, but of differeint lengths will be directly as the lengths.

From the above we may infer, that whether a body defcends through the diameter of a circle, or through any chord of the fame circle, the defcent will be performed in the fame time; and the velocity at the loweft point, will be equal to that which would be acquired by falling through the perpendicular height of the chord.

If, while a body defcends down one chord, ano. ther falls through the diameter of the circle, then while it would afcend up the oppufite chord, which would be in the fame time, the falling body would
pafs over four times the diameter of the circle. The times of defcent in arches, are to thofe in their refpective chords, as 1 to .7854 . Therefore the length of a pendulum to vibrate feconds will be fuund, by the following procefs, to be 39.2 inches; for, As 1 (the fquare of 1 fecond) is to 16.12 feet, fo is $\frac{1}{7}$ (the fquare of $\frac{1}{2}$ a fecond) to 4.03 feet, the diameter of a circle, in whofe chord a body would defcend and afcend in a fecond of time. Its radius is 2.01 feet; and as the defcent in the arch, is to the defcent in the chord, as 1 to .7854 , it will be, As the fquare of .7854 , is to the fquare of 1 , fo is 2.01 feet, to 3.26 feet, $=39.2$ inches. The lengths of pendulums are in the fame ratio as the §quares of the times in which they vibrate. Therefore $t_{1}$ ) find the length of a pendulum to vibrate balf fecond, fay, As 1 (the fquare of 1 fecond) is to $\frac{1}{4}$ (the fquare of $\frac{1}{2}$ a fecond) fo is 39.2 inches to 9.8 inches, the length required, \&c.

Bodies, thrown in horizontal, oblique, or upright directions, are called projectiles. Every projectile is acted upon by two forces, the impetus or projectile force, and the power of gravity By the firt, it paffes over equal fpaces in equal times; but hy the fecond, it falls through fpaces which are as the fquares of the times Every projectile, therefore, moves in a curve, except it be thrown upright, in which cafe, to appearance, they will move nearly in a ftraight line:

Every body, revolving round a centre, is alfo acted upon by two forces, the centrifugal and centripetal. The centrifugal arifes from the firlt impulfe, and tends to carry the body of from the centre : but by the ceatripetal force it is conitantly drawn towards the centre. If thefe forces have a certain ratio to each other, the body is kept revolving round a centre in a circle or ellipfis.

In revolving bodies we muft obferve the quantity of matter, the diltance from the centre, and the periodical time, or time in which the body makes one revolution round the centre.

Two equal budies rewolving round a centre at the Same diftunce ard in the fame time, will have tqual centrifugal forces.

If the diflances and periodicult times be equal, the acnirifugal forces will be diretiy as the quanillics of malt:..

If the periodical times and quantities of matter be equal, the centrifugal forces will be in ihe fame ratio as the diftances.

If the pariorical times be equal, and the difances be reciprocally as the quantities of matur, the contrifugal forces will also be equal.

When the diflances and quantities of matter are cquai, the centrifugal furces are direetly as the Squares of the velocities, or reciprocally as the fouares of the periodical times.

Thefe laws are all demonitrated in the lectures, by the central machine.

The centre of magnitude is a point which is equally diftant from every part of the furface. The centre of motion is that point which remains at reft, while all the outward parts of the body revolve round it. The centre of gravity is a point in every body, which, if fuftained, the whole body remains at reft: in uniform and homogeneal bodies it is in the middle of a right line drawn between oppofite angles; in a circle it is in the centre; in a triangle it is in a line drawn from an angle to the middle of the oppofite fide, one third of the length of that line from the fide. From a knowledge of this centre, we account for the phænomenon of the rolling cone, which feems to roll upwards between two inclined wires, as Berwn in the lecture. Alfo for the cylinder, which rolls up an inclined plane, while the centre of gravity defcends. From hence we alfo fee the reafon why fome bodies ftand more firmly on their bafes than others; for while the perpendicular line, which paffes through this centre, falls within the bafe of the budy, it cannot fall, \&c.

If a number of bodies be connected together by a line, there will be a common centre of gravity a mong them, which, if fupported, they all remain at ref.

There are generally reckoned fix mechanical powers.

## 1. The Lever.

Which is of three forts. The firlt has the weight at one end, the power at the other, and the fulcrum or prop between them. The fecond fort has the fulcrum at one end, the power at the othero and the weight between them. The third fort has the fulcrum at one end, the weight at the other, and the power between them.

In order to obtain an equilibrium in the lever, the power mult always be to the weight, as the difance of the weight is to the diftance of the power from the fulcrum : for then the product of the power, multiplicd by its diftance, will be equal to the product of the weight, multiplied by its diftance from the fulcrum, which is always the cafe when they balance each other. For bodies of unequal magnitude can only balance each other when their momenta are equal, and this can only happen when their velocities are reciprocally as their quan_
tities of matter*. The power of every kind of lever is computed by the fame rules.

## 2. The Wheel and Axis.

In this machine the power is applied to the circumference of the wheel, and the weight to the circumference of the axis. Its force is computed by dividing the diameter of the wheel by the di* ameter of the axis.

## 3. The Pulley.

A fingle pulley, if fixed, docs not increafe the power: for it is evident the weight and power will pals over equal fpaces in the fame time. But in a combination, where one part is fixed, and the other moveable, the power will be to the weight, as unity to the number of ropes which come to the lower or moveable block : or however they be combined, the power will be to the weight, as the velucity of the weight is to the velocity of the power.
4. 7 be

$$
\begin{aligned}
* \text { Let } z & =\text { the weight. } \\
p & =\text { the power. } \\
d & =\text { diftance of the weight from the fulcrum: } \\
n & =\text { diftance of the power from the fulcrum. }
\end{aligned}
$$

 shefe be given, the fourth may be found; for we have

$$
n=\frac{d w}{p}, p=\frac{d w}{n}, w=\frac{p n}{d}, d=\frac{p n}{v}
$$

## 4. The Inclined P'ane.

The inclined plane makes an oblique angle with the horizon. The length of the plane is the difo tance, upon its furface, between the loweft point and the higheft. The altitude of the plane is the perpendicular height from the horizontal line which touches its loweft point If a body is to be fuftained upon the inclined plane, the power will be to the weight, as the height is to the length of the plane; or as the fine of the angle of elevation is to the radius.

## 5. The Wedge.

A line drawn from the middle of the head to the odge, is called the axis, or length of the wedge.

When the direction of the refiftance is perpendicua lar to the axis, the power will be to the refiftance, as the breadth of the head is to the length. For the axis is the fpace paffed over by the power, and the thicknefs of the head, that paffed over by the refiftance.

## 6. The Screzu.

The force of the fcrew is computed by comparing the velocity of the weight with the velocity of the power; for fuppofe the diftance of the threads be one inch, and the length of the lever to which the power
is applied be 3 feet, then, in one revolution of the fcrew, the weight will rife one inch, and the power will move through a fpace of 226,28 inches. From whence it appears, that the power by fuch a fcrew would be increafed above 200 times.

All thefe computations would anfwer very exactly were there no friction; but a very confiderable part of the force is deftroyed by friction ; fo that in loaded machines, engines, \&c. we may deduct in fome $\frac{f_{6}}{6}$ in others $\frac{1}{5}$, $\frac{x}{4}$, or $\frac{8}{3}$ part of the whole effect.

All machines, however complicated, are compofed of the fimple powers, differently combined together, and the force or effect of the whole is found by computing the force of every feparate power, and multiplying the products together; as for example, in the common crane, fuppofe the length of the handle be 18 inches, and the diameter of the nut 4 inches: if io fone be applied to the handle, it will balance 90 at the circumference of the nut, for it is 9 times as far from the centre. Let the diameter of the great wheel be 2 feet, and the diameter of the axis 4 inches, then, by this, the power will be increafed 6 times, which, multíphed by the laft, will give 54 ; fo that if 10 ftone be applied to the handle, it will balance 10 times 54 , or 540 , at the axis.

$$
[109]
$$

## leCTURES XI. \& XII.

## GEOGRAPHY and ASTRONOMY.

## Geography.

That the earth is of a globular form is evident. from the fhadow caft upon the Moon in a lunar eclipfe, by obferving fhips at fea, and by failing quite round it. Yet it has been found, by meafuring a degree of latitude at the equinoctial, polar circle, and feveral other parts, that the earth is not a perfect globe, but an oblate fpheriod, being a little flatted at the poles. This alfo agrees with the theory of revolving bodies, for were the Earth fluid, as it probably might in part, at the beginning, the parts under the equinoctial would be thrown further from the centre, by the centrifugal force, which is there computed to be $=\frac{1}{5} \overline{9}$ part of gravity. That the Earth is not a perfect globe, is alfo proved by the vibrating of pendulums : for it is found, that a pendulum to vibrate feconds, mult be longer at the polar circles than at the equator; and that the dif. ference is more than would be produced by the centrifugal force.

However, when the various continents, iflands, reas, gulphs, rivers, \&c. are delineated upon the furface of a globe, it may be confid.red as a juft repreientation of the habitable world,

The circles of the fphere are the equinocital, ecliptic, meridian, borizon, colures, tropics, and polar sircles.

The Equator, or Equinoctial Line, is a great circle which runs eaft and weft quite round the globe, being every where at an equal diftance from the poles, or axis, round which the globe turns.

The Ecliptic is that great circle, in which the Sun always appears to move. It cuts the equinoctial in two oppofite points, called Aries and Libra, and makes an angle with it of $23 \frac{\pi}{2}$.

Meridians are great circles which pafs through the poles of the world, through the zenith and nadir, and cut the equinoctial line at right angles.

The Horizon is a great circle which bounds the fpectator's fight in the heavens, and is every where equally diftant from the place where we ftand. On the artificial globe it is reprefented by a broad wooden circle.

The Colures are two meridians, one of which paffes through the begimning of Aries and Liorra, and is call d the equinoctial colure; and the other through the beginning of Cancer and Capricornus, and is callid the folftitial colure.

The leffer circles are the two tropics, and the two polar circles. The tropic of Cancer is $23 \frac{1}{2}^{\circ} 10$ the north, and the tropic of Capricorn $23 \frac{1^{\circ}}{2}$ to the fouth of the equinoctial. One bounds the Sun's declination on the north, and the other on the fouth fide thereof.

The northern polar circle, called the arciic circle, is $66 \frac{1}{2}^{\circ}$ north of the equator ; the fouthern, or antarctic circle, is the fame diftance fouth of the equator-

There are two frigid zones; one is furrounded by the arctic circle, and the other by the antarctic circle.

There are alfo two temperate zones; one lies between the tropic of Cancer and the arctic circle; the other between the tropic of Capricorn and the antarctic circle. All that face which lies between the two tropics, is called the torrid or burning zone.

The inhabitants of the torrid zone are called Amphifcii, becaufe at noon they caft their fhadows different ways at different feafons of the year.

The inhabitants of the temperate zones are called Heterofoii, becaufe their fhadows at noon always fall one way.

The inhabitants of the frigid zones are called K 2

Perijcii,

Perifcii, becaufe in fummer they caft their fhadows quite round them.

Thofe who live under the fame meridian, but have as many degrees fouth latitude as we have north, are called Antiaci, or Antaci: they have the fame hour, their days are always the length of our nights, and their fummer is our winter.

The Periaci lie under the fame parallel of latitude, but differ $180^{\circ}$ in longitude: their days and nights are always the fame length of ours; their feafons are alfo the fame, but they have the contrary hour, or noon, when we have midnight.

The Antipodes have as many degrees fouth latitude as we have north, and alfo differ : $80^{\circ}$ in longitude, and confequently are directly under our feet ; their day is always the length of our night, their fummer is our winter, and they have noon when we have midnight.

A climate is fuch a fpace of the globe, that in fummer, the longeft day on the north fide (if in north latitude) exceeds the longeft day on the fouth fide, by the fpace of half an hour. There are ${ }^{\circ} 4$ climates on each fide of the equator, between it and the polar circles; and 6 on each fide between the polar circles and poles, where the length of the days on that fide of the climate next the pole, exceeda
exceeds the length on the other fide by a whole month.

The globe is divided into three different Spheres. Thofe who live under the equinoctial, have a righe Sphere, and have the poles in the horizon. A parallel Sphere has the equator in the horizon, and alt the circles of latitude parallel thereto. An oblique spbere has one pole elevated above the horizon, and the other depreffed below it.

Latitude of a place, is its diftance north or fouth from the equator.

Longitude is the diftance between the meridians of any two places, and is counted upon the equator.

The Zenith is that point in the heavens which is directly over our heads.

The Nabir is that which is diametrically oppofite, or right under our feet.

A Continent is the largeft divifion of land, comprehending various countries, empires, and king. doms, not feparated by water.

An Island is a tract of land entirely furrounded. by water.

A Peninsula is a part of land, all furrounded by water, except a narrow neck, called an

Isthmus, by which it is joined to the continent.
A Promontory is a mountainous part of land, ftanding far into the fea.

The Ocean is the largeft collection of waters; it lies between, and environs the continents.

A SEA is a fmaller part of the ocean, which goes between the continents.

A Gulph is a part of the fea, every where encompaffed with land, except one fmall part called a

Strait, which is that narrow paffage by which it is joined to the adjacent fea.

A $L_{\text {ake }}$ is a large quantity of ftagnant water, entirely furrounded with land.

The whole furface of the globe contains near 200 millions of fquare miles: the inhabited part 39 millions; the fea and unknown parts 161 milloons. From whence it appears, that there is more than 4 times as much water as land upon the furface of the globe.

## Aftronomy.

Astronomy is that feience which difcovers to us the true motions, magnitudes, diftances, eclipfes, and other appearances of the heavenly bodies In the Solar Syfem, which is compofed of the Sun, 6 primary, and io fecondary planets, befides comets, the Sun is placed in the centre, and the planets revolve round him from weft to ealt, at different diftances, and in different periods; as in the following table.

|  |  |  | 苞 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury | 367 |  | $\begin{aligned} & \mathrm{D} \\ & 87 \end{aligned}$ | ${ }_{2}$ | D. H. uaknown | 3,000 | 109,700 |
| Venus | 68 |  | 224 | 17 | 248 | 9,000 | 80,300 |
| Earth | 95 |  | 1. | $\bigcirc$ | $1{ }^{1}$ | 7,970 | 68.200 |
| Mars | 145 | 粡 | 1 321 | 17. | $10^{3}$ | 5,150 | 55,000 |
| Jupiter | 494 | 21 | 11315 | ${ }^{\circ}$ | 0 10 | 94,000. | 29,000 |
| Saturn | 9.07 |  | 29167 | ou | unknown | .78,000 | 22,000 |

The fpace in which the planets move, feems to be void of all matter which can afford refiftance: for doubtlefs they continue to move with the fame velocity which they had at the beginning, which, according
according to the laws of nature, they could not do if they were refifted: for the planets are conftantly acted upon, or kept moving round the Sun by two powers; one is the centripetal force, or attraction of the Sun; by this they are conftantly acted upon and drawn towards the Sun's centre : the other is the centrifugal or projectile force, by which they endeavour to fly off in tangents to their orbits. The projectile force, which remains the fame, was communicated ty the Creator at the beginning: and as the attraction of the Sun at every planet is different, fo is the centrifugal force; for it is neceffary that they have a certain ratio to each other, in order to keep the plarets revolving in orbits nearly circular. Comets move round the Sun in orbits vafly eccentric ; and, like the planets, always defcribe equal areas in equal times; for as they approach the Sun, their velocity increafes. The diameter of the Sun is 893,760 miles; it turns round its own axis, which makes an angle of 8 degrees with the ecliptic, in fomething lefs than 26 days.

Jupiter has four moons, whofe orbits lie nearly in the plane of the ecliptic. They revolve round him from weft to eaft ; the firft at the diftance of 5.6 femidiameters in one day, 18 hours, and $27 \mathrm{mi-}$ nutes; the fecond at the diftance of 9 femidiameters in 3 days, 13 hours, and 13 minutes; the third at
the diftance of 14.2 femidiameters in 7 days, 3 hours, and 49 minutes; the fourth at the diftance of $25 \cdot 3$ femidiameters in 16 days, 16 hours, and $3^{2}$ minutes. This planet is alfo furrounded with cloudy dark ftreaks, commonly called his belts, but what they are, is at prefent unknown.

Saturn is attended with five fatellites or moons: the firt, at the diftance of 2 femidiameters, revolves in 1 day, 21 hours, and 18 minutes; the fecond, at the diftance of 2.4 femidiameters revolves in 2 days, 17 hours, and 41 minutes; the third, at the diftance of 3.6 femidiameters, revolves in 4 days, 12 hours, and 25 minutes; the fourth, at the diftance of 8 femidiameters, revolves in 15 days, 22 hours, and 41 minutes; the fifth at the difance of 233 femidiameters, in 70 days, 22 hours, and 4 minutes. Befides thefe moons Saturn is alio encompaffed with an amażing phxnomenon, called his ring, the diameter of which is computed at $\mathbf{1 2 0 , 0 0 0}$ miles. This ring is inclined to the plane of the ecliptic, abour 31 degrees; its nodes are in 19 degrees and 45 minutes of Virgo and Pifces. When Saturn is in thofe figns, the plane of the ring paffes through the Earth, it will therefore be invifible, or appear like a ftraight line upon the difk of the planet. But when Saturn is in Gemini and Sagittarius, the ring will be moft open, and in the belt pofition to be viewed.

The Georgian Sidus, or new planet, difcovered by the indefatigable Herfchel, it is prefumed will be fomething more than 80 years in making one revolution: it is at the diftance of $1,800,000,000$ miles from the Sun. Mr. Herfchel has alfo difcovered two moons which attend it. In January, 1790, viewed from the Earth, it was about 8 degrees in Leo, with 39 minutes north latitude. Its mean motion is little more than one degree in three months.

There have been two other hypothefes invented to account for the celeftial appearances, called the Ptolemaic and Tychonic Syftems. But in the lectures they are Berwn, by the planetarium, to be infufficient to account for the phonomena, and therefore exploded; and the Copernican proved, by unan $\sqrt{ }$ werable arguments and demonflrations, to be the true flem of the world.

As all the planets are retained in their orbits by the attraction of the Sun, fo is the moon by the attraction of the Earth: the Earth and Moon mutually attract each other, in proportion to their quantities of matter. By this power they are con. nected, and between them there is a common centre of gravity*, at the diftance of 1218 miles from
the
*The diftance of this centre is found as follows:
Let $e=$ the quantity of matter in the Earth $=45$.
$0=$ the quantity of matter in the $M o o n=1$.
the Earth's furface. It is this centre that defcribes the great orbit round the Sun, and not the Earth itfelf, for both the Earth and Moon revolve round this centre once a month. Hence the Earth will be about 11,000 miles nearer the Sun when the Moon is full than when fhe is changing.

The Earth in one day turns round its own axis, and in one year is carried round the Sun, with its axis inclined to the plane in which it moves, making an angle therewith of $66 \frac{1}{2}$ degrees, and always retains its parallelifm, by which means the poles alternately incline towards the Sun. When the Earth is in libra, the Sun appears in the equator, and the circle of illumination pafles through the poles of the world: the days and nights are now of an equal length on every part of the globe. But while the Earth moves from Libra to

Capricornus
Let $a=$ diftance between the Earth and Moon $=240,000$.
$x=$ the diftance between the centre of the Earth and the centre of gravity

Then (per mechanics) we flall have, $e x=m a-m x$; and $x=-\frac{m a}{e+m}$, viz. if the quantity of matter in the Moon be multiplied by the diffance between the Earth and Moon, and that product dividad by the fum of the quantities in the Earth and Nioun, the quatient will be the difance from the Earth's cietro, $=5,218$ miles.

Capricornus, the north pole will confantly turt towards the Sun, and the fouth pole from it; du* ring which fpace, the days in northern latitudes are conftantly increafing, and the nights decreafing. When the Earth comes to the beginning of Ca* pricornus, we have the longeft day, and fhorteft night, and the Sun appears in the oppofite fign, Cancer. At this time the whole northern frigid zone is illuminated, and the fouthern obfcured in darknefs. The circle which divides between the light and dark hemifphere, juft touches the polar circles, fo that at every place, except the equinox and poles, the days and nights are of unequal lengths. After the earth has paft the beginming of Capricornus, the north pole begins to turn from the Sun, and the fouth pole towards it. The days in northern latitudes again begin to fhorten, and in fouthern latitudes to lengthen. When the Earth comes to the beginning of Aries, the poles are equally diftant from the Sun: the circle of illumination again divides all the parallels into equal parts, and the days and nights are every where of an equal length. As the earth moves forward from Aries to Cancer, the days in northern la. titudes will continue to fhorten, and in $f$ uthern latitudes to lengthen. When the Sun appears in the beginning of Capricornus, which happens when the Earth arrives at the beginning of Calicer, the days in northern latitudes are of the leaft lergth, and the nights of the greaten; at which time we
have the middle of winter. The whole northern frigid zone is now obfcured in darknefs, and the fouthern frigid zone all illuminated. When the Earth has paffed this point, the north pole will gradually turn towards the Sun, and the fouth pole from it. The days conftantly increafe, and the nights contract, while the Earth moves through that half of the ecliptic. When the earth comes to the firft point of Aries, it has made one revolution round the Sun. The days and nights, as at firf, are now equal all over the Earth. Whence the caufe of the different feafons, and different lengths of days and nights is evident. Explained by the Orrery.

The 12 figns of the Esliptic.

Northern Signs.
$r$ Aries,
४ Taurus,
II Gemini,
Ф๐ Cancer,
$\Omega$ Leo,
琾: Virgo,

Southern Signs.
$\bumpeq$ Libra,
$\eta$ Scorpio,
$\hat{\star}$ Sagittarius,
Ye Capricornus,
mu Aquarius,
X Pijes.

The orbit of the moon makes an angle of 5 degrees and 20 minutes with the plane of the e . cliptic, and interfects it in two oppofite points, called nodes, one of which is called the Dragon's-
bead, and the other the Dragon's-tail. When the Moon is in thefe points or nodes, fhe has no latitude; but when fhe is in any other part of her orbit, fhe is faid to have north or fouth latitude, according as fhe is north or fouth of the ecliptic. In the Orrery the Moon is carried round by a fyderial plate, on which are engraved the figns of the ecliptic. On another plate is alfo engraved her age, the diftance from her nodes, and latitude; by which, when the orrery is rectified, her age, place in the ecliptic, diftance from her nodes, and latitude, are, for any day, pointed out. The nodes of the Moon do not remain fixed in the fame part of the ecliptic, but have a retrogade motion, and make one revolution in $18 \frac{3}{4}$ years. This mution of the nodes is the caufe of various phænomena : it is owing to this, that the moon, once in 19 years, goes further, both north and fouth, than at any other time, and that the eclipfes always happen at different feafons of the year, \&c.

The Moon, like all the planets in the fyftem, is an opaque or dark body, and fhines upon the Earth by reflection from the Sun; therefore, as the Moun is conftantly moving round the Earth, it is evident, that when fhe is between the Earth and Sun, her dark fide will be turned towards the Earth, and the will be invifible. As the moves from conjunction, her illuminated fide will gradually turn
fowards the Earth, till the be oppofite to the Surn, when fhe will appear full. After which time fhe will again conftantly decreafe, till the conjunction or change. Shewn by the orrery.

While the Moon makes one revolution round the Earth, fhe alfo turns once round her axis, and of confequence fill keeps the fame fide towards the Earth; fo that a fpectator in the Moon would always fee the Earth, which is a moon to the Moon, in the fame part of the heavens, and it would appear, when full, about 13 times larger in furface than the full moon appears to us. As the moon only turns once round her axis in a lunation, one lunar day and night will be the length of $29 \frac{1}{2}$ of ours. The moon in the fpace of $27 \frac{1}{3}$ days, movea through all the figns of the ecliptic, or quite round the Earth: this is called the fyderial day. The reafon that fhe is not again in conjunction with the Sun, is owing to the Earth's progreffive motion in its orbit, by which the Sun appears to have moved through near a whole fign to the eaft, fo that the Moon will yet require about $2 \frac{1}{6}$ days to come $u_{p}$ with the Sun; which fpace of time is called the difference between her periodical and fynodical revolutions, or between her folar and fyderial day.

The Moon, fome days before and after the change, appears cufped; and the pofition of thefe
curps, at different times of the year, is very different; but always the fame at the fame feafon. Shewn by the Globe.

The different angles, which different parts of the ecliptic make with the horizon, when rifing, is the caufe of that phænomenon we call the Harveft Moon: Virgo and Libra make the greateft angle; Pifces and Aries the leaft; fo that in a given time, a greater length of the ecliptic rifes in thefe figns than in any other; and did the Moon move in the ecliptic, fhe would rife about 26 minutes later everynight for 6 nights together. But as the orbit of the Moon does not lie in the plane of the ecliptic, She will fometimes rife with lefs difference of time, and fometimes with more. For when her north node is in Aries, and her fouth node in Libra, her orbit will make the leaft angle with the horizon, at the rifing of Aries, that can be. In this latitude, it will not be more than $7 \frac{1}{6}$ degrees, and fhe will xife for 6 nights within one hour and 35 minutes of the fame time; or fhe will be about $\frac{1}{4}$ of an hour later of rifing every night: but the will differ $1 \frac{x}{4}$ hour every morning in her fetting.

When the fouth node is in Aries, and the north node in Libra, the Harveft Moon will be leaft advantageous; fhe will differ near twice as much in her rifing, as fhe did in the laft pofition of her nodes; the reafon whereof appears plain by the orrery.

The Moon rifes with the fame difference of time once in every lunation, as fhe does in harveft; but as this does not happen at the full moon, at any other time of the year it is not much noticed. The north node will not be in the beginning of Aries before the year 1820, when we fhall have the Harveft moons to the greateft advantage.

At the equinoctial they have no Harvelt Moon for an equal quantity of the ecliptic always rifes in the fame time. But as the latitude increafes, the angle, which the ecliptic makes with the ho rizon, at the beginning of Aries, gradually decreafes, till we come to the polar circle, where there is no eaftern angle, and of confequence one half of the ecliptic rifes at the fame time. In this latitude, the Moon does not differ more than 1 hour in her rifing, for 15 days, but is 23 hours later in her fetting.

An eclipfe of the Sun is caufed by the Moont coming between the Sun and the Earth; and is either total or partial. In like manner, an eclipfe of the Moon is caufed by the Earth intervening, or coming between the Moon and the Sun; fo that the Moon lofes her light in paffing through the Earth's fhadow. If the orbit of the Moon was in the fame plane with the orbit of the Earth, there would be an eclipfe of the Sun at every new Moon, and an eclipfe of the Moon at every full. But th:

$$
\text { L. } 3
$$

is prevented by the latitude of the Moon, except fhe be within 12 degrees, 2 minutes, and 9 feconds of the node at the time of the full, or within 18 degrees and 20 minutes at the time of the change; which diftances are called the limits. The nodes, which almoft retain their parallelifm, orly come in a line with the Sun twice in a year, and therefore there can only be two ecliptic feafons in one year. The limits are not always the fame, owing to the different diftances of the Sun and Moon from the Earth, at different times. When the folar limit is leaft, the Sun will pafs over it in 28 days: and when greateft, in $3^{2}$ days: in which time, the Moon may come twice in conjunction with the Sun, and fo caufe two fmall eclipfes. However, in every folar limit, there is one eclipfe very certain. When the lunar limit is leaft, the Earth's fhadow will pafs over it in 19 days; and when greateft, in about 24 days So that the Moon cannot be eclipfed more than once; but may, and often does, pafs the limit without fuffering an eclipfe.

The earth has a third motion, whereby the pole of the world is conftantly moving round the pole of the ecliptic By this motion the equinoxes fall 50 feconds fooner every year than the year before ; and the fixed ftars, by it, appear to move 1 degree eaftward in 72 years. Since obfervations have been made upon the flars, they have moved through almoft a whole fign; for the conftellation which was
once in Aries, is now in Taurus; and the conftellation of Taurus is now in Gemini. By this motion the feafins are conftantly moving backward, or in antecedentia, and would make one revolution in 25,920 years. If the world continues 12,960 years, the longelt day, in northern latitude, will be when the Sun enters Capricom, and the fhortel?, when he enters Cancer.

All the fars which are vifible in the heavens, except five planets, are called fixed fars, and feem to be fixed in the fame part of abfolute fpace. The motions which they feem to have, are caufed by the motion of the Earth. For if the Earth turns round its axis in 24 hours from weft to eaft, they mult appear to move from eaft to weft. The fixed itars are at immenfe diftaices from the Earth or Sun. Was a body to fly from the Sun with a velocity of 8 miles per minute (which is about as fwift as a cannon ball) it would arrive at the orbit of Mercury in $8 \frac{3}{4}$ years; at Venus in $16 \frac{1}{2}$ years; at the Earth in $22 \frac{3}{4}$ years; at Mars in $34^{\frac{1}{2}}$ years; at Jupiter in $117 \frac{3}{4}$ years; at Saturn in $215 \frac{3}{4}$ years; but it is fuppofed it would not reach the nearelt of the fixed ftars in lefs than 700,000 years. However, their diftaice is utterly unknown, being immeafurable, and inconceivable. It is fuppofed, that the different degrees of brightnefs or $f_{p}$ lendour which we obferve amongt the flars, is owing to their different diftances from us, and not to any diffurence
difference in their magnitude ; for it is moft likely, that they are equally diftant from each other, as they are from the Sun. They fline by their own native or unborrowed light, and are innumerable: for by a telefcope, thoufands may be feen, which are invifible to the naked eye. We cannot, therefore, fuppofe that thefe unfeen flars were placed in the heavens, in order to fupply the inhabitants of the Earth with a faint light in the night, for which purpofe, fome think the reft of the flars were made: neither can we fuppofe that they were made to declare to the Earth the greatnefs and power of the Creator, becaufe very few of the race of mankind have feen them, or heard of their exiftence; nor can we think that the Almighty has created any thing in vain: but we may reafonably conclude that they are Suns, or fountains of light, illuminating fyftems of planets, whofe motions are controlled by their attractive power; and that the flars, which are invifible to the inhabitants of the Earth, proclaim the glory and wifdom of the Deity to other intelligent beings, dwelling in worlds placed far beyond the utmoft bounds of our fight. This hypothefis difplays the greatnefs and dominion of the divine Being. This confines not the creation within the narrow bounds of the fphere of fixed ftars, but fuppofes it extended through the regions of immeafurable fpace.

This wide machine, the univerfe, regard, With how much fkill is each apartment rear'd!
The Sun, the fource of light, prodigious mafs, Of this our fyltem holds the middle place. Mercury, the neareft to the central Sun, Does in an oval orbit, circling, run; But rarely is the object of our fight,
In folar glory funk, and more prevailing light.
Venus, the next, whofe lovely beams adorn As well the dewy eve as opening morn, Does her fair orb in beauteous order turn.
The Globe Terrestrial next, with flanting poles;
And all its pond'rous load, unwearied rolls. Mars, next in order, further from the Sun, Does in a more extenfive orbit run.
Then we behold bright planetary Jove, Sublime in fpace, through his wide province move ; Four fecond planets his duminion own, And round him turn, as round the Earth the Moon: Saturn, revolving in a higher fphere, Is by five moons attended through his year: The valt dimenfion of his path is found Five thoufand million Englifh miles around, The Georgian Sidus, or the Herfchel Star, Revolves fupernal in his dufky car.

Yet is this mighty fyitem, which contains So many worlds, fuch vaft ætherial plains, But one of thoufands, which compofe the whole, Perhaps as glorious, and of worlds as full.

The fars which grace the high expanfion, bright
By their own beams and unprecarious light;
Tho' fome near neighbours feem, and fome difplay
United luftre in the milky way,
At a vaft diftance from each other lie,
Sever'd by fpacious voids of liquid fky.
All thefe illuftrious worlds, and many more, Which, by the tube, Aftronomers explore;
And millions which the glafs can ne'er defcry,
Loft in the wilds of vaft immenfity,
Are funs, are centres, whofe fuperior fway
Planets of various magnitudes obey.

If we, with one clear comprehenfive fight, Saw all thefe fyftems, all thefe orbs of light ; If we their order and dependence knew, Had all their motions and their ends in view, With all the comets that in $x$ ther ftray, Yet conftant to their time and to their way : Would not this view convincing marks impart Of perfect wifdom, and ftupendous art ?

Blackmose.

## APPENDIX,

## CONTAINING

## Supplementary Leciures,

() HICH ARE DELIVERED OCCASIONALL

## ［133］

## APPENDIX。

## ェ．MILLS．

Accompanied by experiments on a model of a water wheel，\＆c．

On the effects of falling bodies．
On impulfe and accelerated motion．
The moving power compared with the velocity of the wheel．

On the application of water．
Experiments with different cog－wheels．
On the greateft effect of a given power．
The fize of the wheel compared with the fall．
On the velocity produced by different powers．

2．STEAM ENGINES。
The fteam engine confifts of a large beam，boiler， cylinder，\＆c．In the cylinder，which fauds upright， a pifton is fufpended from one end of the beam， and to the other are fixed the pump rods．The
cylinder and boiler are made to communicate by means of a pipe, in which is placed a plate called the regulator. The boiler is filled with water to a certain depth, which, by fire, is converted into a vaftly elatiic fteam*, the ftrength of which is known by its lifting a valve at the top of the boiler, called the fteam clack. When the regulator is open, the steam enters into the cylinder, and drives out the air through a fmall hole, covered with a valve, called the fuifting clack. When the cylinder is filled with fteam, the regulator is thut, and the injection cock is opened, by which a jet of cold water is let thto the cylinder from a ciftern fixed above. This jet condenfes the fteam, and makes a fufficient vacuum for the pifton to defcend, which is immediately brought down by the weight of the atmofphere. In its defcent it fluts the injection cock, and

* It has been maintained by many, that water, when sonverted into fteam, fills $1_{3}, 000$ times its original fpaceBut from various experiments, made in order to afcertain the expanfion in the cylinders of fteam engines, I conclude it is much lefs. When the boiler ftands at a diftance, the fleam is cooled, and part of it is condenfed by the tubes in which it is conveyed; much of it is alfo condenfed by the cylinder. By many experiments made on a cylinder 3 feet in diameter, one gallon of water produces about 800 gallons of efficacious fteam. By other experiments made by Mr. Bateman, of Whitehaven, with a cylinder. five feet, eight inches diameter, one gallon of water will produce 1532 gallons of feam, but never more
and opens the regulator; the fteam again enters into the cylinder, and balancing the preffure of the air, the pifton is raifed by the weight of the pump rods at the other end of the beam; as it rifes, it fhuts the regulator, and opens the injection cock: the ftroke is again repeated, and the water in the pumps is raifed, and difcharged at the top.

The fteam is feldom much ftronger or weaker than the outward air: if it be $\frac{1}{15}$ flronger, the engine will work well. At a mean, the preffure upon every fquare inch of the pifton will be 14 lb . and upon every foot 18 cwt . But in practice the weight at the other end of the beam, fhould not be more than half the preffure upon the pifton, in order that tne engine may ftrike fufficiently faft.

The fteam engine has lately been made with an inverted pifton, to fave the expenfe of a beam. The contrivance is ingenious, but it does not work any thing near fo well as when made with a beam.

## Patent Steam Engine:

Since the firft invention of the feam engine, by Meffrs. Newcomen \& Cowley, of Dartmouth, to.. wards the latter end of the laft century, it has undergone feveral alterations; the greateft of which has been made by Meffrs. Bolton \& Watt. Inftead af the preffure of the air, they have fubitituted
the elaftic force of the fteam; and inftead of con. denfing, as in the common form, a vacuum is made $i_{n}$ an adjoining veffel, into which enters a jet of cold water, which, with the condenfed fteam, is removed by a pump. By this contrivance, the cy= $1_{\text {inder }}$ is always kept hot, and confequently requires lefs fteam. In this confruction, the top of the cylinder is clofed; a rod paffes through a collar in the cover; and a communication is occafionally opened between the top and bottom of the cylinder.

When this engine is applied to communicate a sotatory motion, the fteam alternately preffes upon the upper and lower fide of the pifton, which, in this cafe, is not fufpended from the beam by a chain, but fixed in fuch a manner, as to prefs the beam with equal force, whether rifing or falling.

## 3. THE SOLAR MICROSCOPE.

This can only be exhibited on a fine clear day.
A great variety of objects, as fections of twigs, roots, \&c. the eyes, wings, legs, \&c. of fmall infects. are exhibited by this inftrument much magnified The cryftallization of falts, and the curious and different forms affumed, are very interefting.

By the opaque microfcope pieces of coin, \&c. are magnified in a fimilar manner.

The

The fcioptic ball alfo ferves the purpofe of a camera obfcura, and when the Sun flines clear, forms a beautiful landfcape within the room.

The fots of the Sun, when there are any vifible, may be exhibited in a room, upon a fcreen, by adapting a telefcope to the apparatus.

The colours of the rainbow illuftrated by prifms, \&

## $[138]$

## AN

## EXPLANATION

$$
O F
$$

## Technical Words, Terms, \&c.

Ufed in the foregoing Lectures.

$$
A
$$

CIID, four, fharp.
Accumulate, to heap up, to gather together. Adhefion, a cleaving, or fticking to.
Alkali, a fixed falt, or fubftance that will ferment with an acid.
Ambient, encompaffing.
Analogy, ratio, proportion.
Aperture, an opening, hole, \&c.
Aphelion, that point in a planet's orbit which is fartheft from the Sun.
Apparatus, inftruments for performing experiments. Atmolphere, the air.

## C

Capillary tube, a tube with a bore as fmall as a hair. Ceniral, of or belonging to a centre.
Circumambient, furrounding on all fides.
Cobefion, fticking together.

$$
[139]
$$

Comprefs, to pref together.
Concave, hollow.
Concentric, that have the fame centre.
Condense, to make thick or clofe.
Conjunction, a meeting of two planets, \&cc. in the fame degree.
Contact, touching each other.
Convex, round, protuberant, like the furface of a globe.
Convergent, tending to, or meeting in one point. Counterpoise, to balance. Cusps, the horns of the Moon, \&c.

## D

Descent, a going down.
DichotomiSed, defected, divided into two equal parts. $D_{i j k}$, the vifible furface of a planet, \&c. Diurnal, daily, belonging to the day. Divergent, fpreading, or feparating.

## $E$

Ebullition, boiling, \&c.
Eccentric, that hath different centres.
Eclipse, a deprivation of light.
Effervescence, waxing or growing hot.
Effluvia, the very fall particles emitted from bodies Elafic, fringy.
Ellipsis, an imperfect circle, and oval-like figure.
Emerfion, a rifing out, or appearing again.
Epitome, an abstract, or Shortening.

$$
[140]
$$

Epoch, or Era, a fixed point of time from whence the fucceeding years are numbered.
Equilibrium, an even balance.
Evap rate, to exhale, or refolve into vapours:
Exhauft, to draw out, or empty.
Expanfion, a fwell, or increafe of bulk.
Expiofion, a noife, or report.
External, outward.

$$
F
$$

Fibres, fall threads, or filaments.
Flaccid, loose, not tight.
Focus, that point where all the rays of the Sun which fall upon a concave mirror, or lenfe are collected.

## G

Gibbous, round, convex, or bunched out.

$$
H
$$

Halo, a circle appearing round the Moon, \&ci
Hemisphere, half of a globe or fphere.
Hetercgeneal, of different kinds or forts.
Homageneal, of the fame fort.
Horizontal, level, parallel to the horizons.
Hypothefis, a fuppofition, \&c.

$$
I
$$

Imbibe, to absorb, or drink in. Immerge, to immerfe, or plunge in water. Immense, infinite. Impetus, a blow, or impulse.

## [141]

Incidence, a falling upon.
Infulated, fupported by an electric balance.
Interflice, a diltance, or fpace between.
Irradiate, to fhine upon, or enlighten

$$
L
$$

Lateral, of or belonging to the fide.
Lenfe, a glafs ground convex.
Longitudinal, lengthways.

## M

Medium, that peculiar conflitution of any fpace or region through which bodies move.
Mepbetic, noxious.
Momentum, the whole force with which a moving body ftrikes againft another in its way.

## $N$

Nocturnal, of or belonging to the night.
Noxious, poifonous, deftructive. y
Nubilous, cloudy, gloomy.
Nucleous, the head of a comet, \&c,

## 0

Oleaginous, oily, or full of oil.
Opaque, dark, fhady.
Orbit, the path of a planet or comet.
Orifice, a hole, aperture, or mouth.

$$
P
$$

Particles, the fmalleft parts of matter. Percuffion, a ftriking.

## $[142]$

Peribelion, is that point in a planef's orbit which is neareft to the Sun.
Perforate, to bore, or pierce through.
Phafes, the different appearances of the Moon, \&c. Phan menin, fignifies an appearance, effect, or operition of a natural body.
Preponderate, to outweigh.
Prijecile, a body thrown or projected from the Earth.

## $R$

Ratio, reafon, proportion. Rarefy, to make thin.
Recipient, a glafs receiver from the air pump.
$R_{f f l e c t i o n, ~ a ~ b e a t i n g ~ b a c k . ~}^{\text {a }}$
Refraction, turning afide, or out of a ftraight line:.
Refrangible, capable of being refracted.
Refervoir, a place for water.
$R$ trogradation, a going backward.

$$
s
$$

Saturated, filled.
Shice, a flood gate, a drain.
Subterransous, under ground.
Syzygia, the conjunction and oppofition of a planet with the Sun.

## $T$

Tangent, a ftraight line juft touching the circumference of a circle.

Tinfon,

$$
[143]
$$

Tenfion, a bending, or ftretching.
Tranfit, a paffing over, or croffing.

$$
V
$$

Valve, a kind of lid, or cover, letting a fluid pale one way, but not the other.
Velocity, celerity, fwiftnefs.
Vertex, the top of any thing.

Univerfe, the affemblage of Heaven and Earth, on of all created beings.

## The following is

## THE NEW NOMENCLATURE,

For moft or all of the fubfances mentioned in this Epitome.
Caloric, heat, fire, igneous fluid, matter of heat.
Oxygen, dephlogifticated air, empyreal air, vital air, bafe of vital air.
Azote, phlogifticated air or gas, mephitis or its bafe. Hydrogen, inflammable air or gas, or the bafe of inflammable air.
Carbonic acid, fixed air. Sulphuric acid, acid of vitriol. Muriatic acid, acid of falt, fmoaking fpirit of falt, marine acid.

## [ 144 ]

Oxygenated muriatic acid, marine acid more fally faturated with oxygen, is in the gaffeous form*. Nitrous gas, two parts of oxygen and one of azote. Nitrous acid, from two to three parts of oxygen to one of azote ; this is a red coloured fuming acid. Nitric acid, four parts by weight of oxygen to one of azote ; this is clear.
Nitro muriatic acid, aqua regia. Acetous acid, vinegar. Prufic acid, colouring matter of Pruffian blue.

* This gas, paffed through water faturated with pot aff, readily unites with it, and forms an oxygenated muriatic falt, which falls to the bottom, and with fulphur, or various ather fubftances, deflagrates with great violence.

FINIS.


Priated by W. Penaington, Kendal.


[^0]:    The zueight of the air is covident, from a number of experiments.

[^1]:    * Some have concluded that water may be comprefied in a fmall degree.

